
Minimal Self-Driving Car agent

Aadesh Neupane
Brigham Young University

Provo, Utah, USA
aadeshnpn@byu.edu

Najma Mathema
Brigham Young University

Provo, Utah, USA
nmathema@byu.edu

Abstract

It is crucial not only to understand the specialized sub-
system of an autonomous vehicle like lane detection, vS-
LAM, and traffic light detection to build a safe and reli-
able self-driving car, but understanding the subsystem in-
teraction with each other is equally important. So for our
CS704R project, first, we independently implement those
specialized subsystems. Second, we combine those mod-
ules to build a minimal self-driving car agent in ROS. Fi-
nally, we test our agent in a simulated highway environ-
ment. Our minimal agent was successful in driving on the
highway track.

1. Introduction
Automation in driving has the potential to allow excel-

lent road safety by reducing risky driver behavior like Driv-
ing Under Influence (DUI), speeding, distraction, and many
more. With so many miles to be traveled every year and so
much time to spend in traffic, self-driving cars can help save
humans’ time and energy for other productive works, assur-
ing more safety and efficiency in commuting. Additionally,
it also serves as a practical approach for elderly and disabled
people, allowing independence and comfort for traveling.

The autonomous driving field is diverse and consists
of unified research among various disciplines, including
robotics, computer vision, deep learning, control, and en-
gineering. It takes accomplished research groups years to
design and implement a self-driving car. This project’s
scope was to implement a few specialized subsystems such
as Lane detection, vSLAM, and traffic light detection and
understand their interaction in a minimal self-driving car
agent.

An online learning platform called Udacity has intro-
duced the course titled- “Become a Self-Driving Car Engi-
neer,” which is targeted towards learning and implementing
the ideas from computer vision and deep learning to build a
self-driving car. They have also provided a simulator plat-
form to test the agent. We leverage the publicly available

materials from this course to implement a self-driving car
agent and tested the agent in their simulator. Note that we
did not have access to any learning or additional materials
from Udacity as we were not enrolled in the course. 1

Figure 1 shows a general self-driving car architecture
with four major components: Sensors, Perception, Plan-
ning, and Control. Paden et al. [27] in their survey paper
emphasized that a) Perception and b) Planning are the cru-
cial components. The perception system comprises mod-
ules responsible for the tasks such as localization, traffic
light detection, static and dynamic obstacles detection, ve-
hicle detection, road mapping, and tracking and recognition,
and others. Whereas, the planning module comprises sub-
systems responsible for tasks such as route planning, path
planning, behavior selection, motion planning, obstacle
avoidance, and control. With our limited CS 704R course
timeline in mind, we emphasized vision subsystems and
cherry-picked to explore lane detection, traffic light clas-
sification, and localization. Then, we integrated those mod-
ules with a PID (Proportional–Integral–Derivative) con-
troller and ROS (Robot Operating System) to create a min-
imal self-driving car that can drive in a simulated highway
road.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the literature review in this area. Section
3 describes the modules we explored for designing the self-
driving car, detailing the algorithms implemented to achieve
the desired functionalities in each of the modules. Section 4
describes the experiments. Section 5 describes the minimal
self-driving car agent. Section 6 presents the conclusion and
future work.

2. Related work
‘Shakey the Robot’ was the first general-purpose robot

with rudimentary manipulative abilities and capable of vi-
sual, tactile, and acoustic signal processing and pattern

1We used the knowledge and intuition built from classes CS 650 and
CS 704R. The self-driving course costs $2034, assuming that the student
completes the course in six months. We only had access to public reposi-
tories that outlines the project description.
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Figure 1. A typical self-driving car architecture.

recognition [25]. Shakey is significant for three distinct rea-
sons: a) its control software was structure b) today’s robots
still follow its integrated computer vision, planning, and
navigation methods, and c) Shakey served as a proof that
encouraged later development for more advanced robots.
‘Allen’ was the first robot based on the subsumption archi-
tecture, which had sonar distance and odometry on board.
It could avoid both static and dynamic obstacles and move
to the distant goal location. Though Shakey and Allen in-
spired other advanced robots, most of them were built for
indoor controlled and lab environments.

DARPA initiated ‘The Grand Challenge’ in 2003 to spur
innovation in unmanned ground vehicle navigation capable
of traversing unrehearsed off-road terrain. In the first com-
petition in 2004, out of 15 teams, none of them completed
the task. In 2005, five teams finished the task, but ‘Stanley’
finished first completed the course in 6h 53 minutes [32].
Stanley team treated the autonomous driving task as a soft-
ware problem by dividing the task into four distinct cate-
gories: sensor interface, perception, planning, and control.
‘The Grand Challenge’ was about autonomous driving in a
desert trial, whereas ‘The Urban Challenge’ was about de-
veloping unmanned vehicles that could navigate traffic in a
mock urban environment. CMU’s Boss [34] was the winner
followed by Stanford’s Junior [23] in the urban challenge.
The global architecture for Stanley, Junior, and Boss au-
tonomous vehicle were almost similar.

The architecture has barely changed for today’s era from
Shakey, Allen, Stanly, and Junior, but significant advance-
ment has been made on each module: sensors, perception,
planning, and control. One of the vital task for a self-
driving car is to identify the lanes, segment the static and
dynamic objects, detect and identify the traffic signs. Road

lane detection had received much attention in the computer
vision community.Kluge et al. [19] proposed an algorithm
for lane detection in noisy road images where edge-based
lane detection schemes struggle. They used a deformable
template model of lane structure to locate lane boundaries
without thresholding the intensity gradient information. Lai
et al. [20] described a novel algorithm to extracts complete
multiple lane information by utilizing prominent orientation
and length features of lane markings and curb structures to
discriminate against other minor features. Wang et al. [35]
propose a Catmull-Rom spline-based lane model that de-
scribes the perspective effect of parallel lines for lane de-
tection. Chen et al. [6] proposed a real-time lane detection
algorithm that described the road boundary as two paral-
lel hyperbolas on the ground plane. By fitting points with
hyperbolas, their model was able to make full use of road
boundaries with partial occlusion. Kim et al. [18] described
a robust lane detection and tracking system to deal with
challenging scenarios based on random-sample consensus
and particle filtering algorithms. Parashar et al. [28] intro-
duced the Sparse CNN network that improved performance
and energy efficiency by exploiting the zero-valued activa-
tions in ReLU operator. SCNN has been successfully ap-
plied for efficient lane detection. Zou et al. [39] used mul-
tiple frames instead of a single image with a hybrid CNN
and RNN network for robust lane detection from continu-
ous driving scenes.

The classical approaches for road traffic sign detection
and classification include taking advantage of the traffic
sign’s unique colors and shapes using simple color thresh-
olding and shape analysis [9, 36]. Detection of traffic signs
in real-world images is a difficult problem. To address this
issue, Houben et al. [17] create a real-world benchmark
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dataset for traffic sign detection and baseline results. Zhu et
al. [38] create a huge benchmark dataset bigger than [17]’s
dataset and proposed a robust end-to-end CNN model sim-
ilar to Faster RCNN to detect and classify traffic signs.

Simultaneous Localization and Mapping (SLAM) is the
concurrent construction of a map and the estimation of
the robot’s pose. SLAM is an important component for
autonomous vehicles. There has been extensive research
in SLAM over the last 30 years. Taketomi et al. [31]
did an excellent survey of current visual SLAM systems.
They also identified the relationship between visual odom-
etry (VO) [26], vSLAM [8] and structure from motion
(SfM) [1]. Estimating the pose of the robot based on the se-
quential changes in the images is visual odometry. Structure
from motion (SfM) is a technique to estimate the camera
motion and 3D structure of the environment in a batch man-
ner where vSLAM does it online with individual images.
There are also direct methods to perform vSLAM such as
DTAM [24], LSD-SLAM [12] and DSO [11].

A self-driving car needs to be aware of its surround-
ings. Semantic segmentation allows the vehicle to classify
the surroundings in semantically meaningful ways. Mask-
RCNN [16] is the most popular and state-of-the-art method
to perform semantic segmentation. Ha et al. [15] pro-
posed an encoder-decoder network for semantic segmen-
tation of images of street scenes for autonomous vehicles
based on RGB-Thermal dataset. Feng et al. [13] reviewed
the methodologies for deep multi-modal object detection
and semantic segmentation in autonomous driving.

DNN based models are viable to replace the standard
pipeline of autonomous vehicles such as depth estimation,
optical flow, semantic segmentation, and others [22]. Also,
there is are works where the standard pipeline has been re-
placed by end-to-end deeplearning [3, 21]. Burnett et al. [4]
described self-driving car architecture and specialized algo-
rithms that enabled the team to win SAE AutoDrive Chal-
lenge to develop a level 4 autonomous vehicle in just six
months. Toromanoff et al. [33] developed a novel technique
called implicit affordances to effectively leverage RL for ur-
ban driving, including lane-keeping, pedestrians and vehi-
cles avoidance, and traffic light detection, and their system
won the Camera Only track of CARLA challenge.

3. Methodology
This section describes the sub-systems used to build a

self-driving car. A typical self-driving car architecture is
shown in Figure 1. Sensors includes everything needed to
understand its surroundings and location, including cam-
eras, lidar, GPC, radar, and IMU. The Perception system
includes software modules and pipelines that analyze the
massive amount of data coming from sensors into valuable
semantic information like lanes, traffic lights, other vehi-
cles, pedestrians, trees, and other static and dynamic ob-

jects. Perception also includes localization that maps the
object in the environment and estimates the vehicle’s cur-
rent pose concerning the maps. The Planning component
is responsible for the high-level decision about the vehicle’s
path that includes path prediction for other dynamic objects,
behavior selection, and trajectory estimation. The Control
module is responsible for converting the planner’s high-
level decision into actuators signals in terms of the throt-
tle, steering angle, and breaking power. Usually, the control
module employs PID or MPC (Model Predictive Control)
to smooth the control signals.

Although each subsystem was built and tested individu-
ally, each of these was not executed in the final product to
test the Udacity self-driving car simulator. The simulator
already had a few of the subsystems built-in for ease and
efficiency in testing. The details will be presented as the
section proceeds. The following are the subsystems devel-
oped for the project: Lane finding, Traffic Light Classifier,
and Visual Odometery.

3.1. Lane Finding

With road safety as one of the significant purposes of
self-driving cars, lane detection is one of its major critical
components of the perception system. Lane detection is vi-
tal for understanding the driving scene and positioning the
car to track the driving route. Lane detection is the pro-
cess of detecting the allowed, safe drivable region in front
of the car and vehicle tracking, where we determine the ve-
hicle’s position relative to the road for navigation purposes.
There are several ways available in the literature on this
problem. In fact, in real-world implementation, it requires
the usage of several other technologies including radar[29],
lidars[10], ultrasonic sensors[5] along with several cameras
to have a complete understanding of the world. However,
components like radar and lidars are costly even for indus-
trial manufacturing, whereas cameras serve as an efficient
yet economical way to understand the environment.

In this project, we have tried three different ways to
tackle this task by implementing it via the traditional
computer vision approach, a deep learning-based model
(SCNN)[28], and Advanced Lane Finding methodology.
We try to differentiate these methods based on their per-
formance based on computational time and generalization
ability.

3.1.1 Classical Computer Vision Approach

The classical approach uses traditional computer vision ap-
proaches where the properties of images like the color
spaces, gradients, edges, and specific regions of interest
within the image are processed. The process is compara-
tively a lot easier and more straightforward than other deep
learning approaches and advanced processes. The entire
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pipeline processing is done on a pre-recorded video using
the OpenCV library.

The video is loaded, and processing is done on each
frame. The first step is to convert the frame to grayscale
and clean up the frame by removing noise by applying a
Gaussian Blur. This is one of the crucial steps for edge de-
tection, which is the objective of lane detection. This is fol-
lowed by a combination of Binary Thresholding and Otsu’s
Thresholding so that the algorithm itself finds the appropri-
ate threshold value. The process of applying a Gaussian blur
followed by Otsu’s Binarization yielded the best results.

Canny Edge Detection is applied for Edge Detection.
The threshold value is the same as identified by Otsu’s
thresholding algorithm. This image is dilated to enhance the
image’s structure by convolving the image with a 5*5 fil-
ter. This allows the brighter areas or the foreground to grow
and darker areas or background to reduce. Thus, it allows
the objects of interest to be more prominent in the image.
The final step is to apply Hough Transform to recognize the
edges or lines and their position in the image. Thus the algo-
rithm extracts all the lines passing through each edge point
and group them by similarity.

3.1.2 Advanced Lane Finding Methodology

Building on top of the classical approach, advanced lane
finding was done to apply the logic to raw video. Advanced
approaches include distortion correction, image rectifica-
tion, color transforms, and gradient thresholding. The lane’s
radius of curvature and vehicle position is identified using
perspective transform and polynomial fit. The pipeline was
created to process a video to detect the lanes on a highway
road.

It is necessary for the processing to have a reasonable
estimation of camera parameters to measure the planar ob-
jects. The camera images could be affected by radial or
tangential distortion, which needs to be removed. Thus, the
first step is to compute the camera calibration matrix to cal-
ibrate the camera and use it for distortion correction to the
raw image. For further processing, the frames should be
converted to a binary image with accentuating the desired
feature, i.e., the lanes. This is obtained by using image ma-
nipulation techniques like color space transformations and
thresholding. Since most of the lane lines are either yellow
or white, these colors are focused on identifying lane lines
in the frames. Existing works show that the color space
transformation from the RGB(Red, Green, Blue) space to
the HLS(Hue, Lightness, and Saturation) space, and using
the Saturation channel has been the most effective to detect
lane lines based on colors. Thus, we used the RGB to HLS
color space transformation to get the saturation channel’s
right threshold to highlight the white and yellow lane lines.
The Sobel operator was used to detect edges in both hori-

zontal and vertical directions based on the image gradients
in all directions. Then the obtained threshold was applied
to the undistorted image, resulting in the binary image.

The next step is to obtain the region of interest which is
the trapezoidal region of the lane to generate the birds eye
view image using perspective transform. The vertex coor-
dinates for the trapezoidal region for the source and des-
tination image are determined to calculate the perspective
transformation matrix. Then with the matrix, the image is
warped accordingly. Then the pixel coordinates of the lane
lines from the transformed image need to be identified. We
computed a histogram of the bottom half of the transformed
binary image in the y-direction to find the x positions with
the highest pixel intensities. A sliding windows search is
performed in the image regions to find the pixel coordinates
for both the right and left side of the lane. After obtain-
ing the pixel coordinates, the equation of the line curve is
calculated by computing a second-degree polynomial using
python’s Numpy’s polyfit to obtain the radius of curvature
and vehicle position from the centerline. A basic assump-
tion of the lanes’ width and the length of lanes are made for
the calculations. For vehicle positioning, the car is assumed
to be in the center of the image. The deviation from the
center of the lane and the center of the picture is calculated.
If the deviation is negative, the car is on the lane’s left side,
and otherwise on the right side.

3.1.3 SCNN-a deep learning based model

SCNN(Spatial Convolutional Neural Network)[28] is a
CNN based traffic lane detection algorithm specially de-
veloped for capturing the spatial relationship of the row
and column pixels of an image. The algorithm is specif-
ically suitable for long continuous shape structure, with a
strong spatial relationship but fewer appearance clues. It
has shown impressive results on detecting traffic lanes on
occluded images where the regular CNN architectures do
not do very well.

The authors show that their model significantly im-
proved the performance on the very challenging Cityscape
dataset[7], and also outperformed the Recurrent Neural Net-
work (RNN) based ResNet and MRF+CNN (MRFNet) in
the lane detection dataset by 8.7% and 4.6% respectively.
This model’s fundamental idea is to view both the rows or
columns of the feature maps as layers and apply convolu-
tion and non-linear activation and sum operations sequen-
tially. This gives rise to a deep neural network, and the
information is propagated between the neurons in the same
layer. As the spatial information is reinforced through the
interlayer propagation, this makes it so useful for structured
objects like lanes or poles with occlusions.

Instead of working with a CNN’s output, the top hidden
layer is split into slices, and each slice is sent to a convo-
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lutional layer. Unlike a traditional CNN, where the output
of a convolution layer is sent to the next layer, each slice’s
output is added to the next slice to form a new slice. The
new slice is then sent to the next convolution layer, and this
process continues until the last slice is updated. Thus, the
convolution kernel weights are shared across all slices, mak-
ing it a kind of RNN. Additionally, this method is repeated
for slices in directions downward, upward, rightward, and
leftward. The main three advantages of using this model
are its computational efficiency, message propagation, and
flexibility to incorporate in any part of the CNN, not just the
top hidden layer.

3.2. Traffic Light Classifier

One of the popular deep learning models, Faster R-
CNN[30], was trained on the Bosch Small Traffic Lights
Dataset[2] for identifying the traffic light signals. Faster R-
CNN is the third and the most widely used iteration of the
original R-CNN paper[14] for object detection.

Though the architecture of Faster-RCNN is a bit com-
plex, it is the most computationally efficient version and
yields a significant performance improvement. Initially, the
images are passed through a pre-trained ResNet50 to obtain
a convolutional feature map. These extracted features are
passed through a Region Proposal Network(RPN) to find a
pre-defined number of regions called the “bounding boxes,”
which are the locations of possible objects in the image.
This was one of the authors’ most prominent problems in
the paper by generating a variable-length list of bounding
boxes by introducing the concept of “Anchors”. Anchors
are fixed-sized reference bounding boxes placed uniformly
throughout the original image. Instead of detecting where
the objects are, the anchors are used to identify if they con-
tain relevant objects and how the anchors could be better
adjusted to fit the relevant object. The RPN is a fully con-
volutional network that takes all the anchors and gives two
predictions per anchor, the “objectness score”(the probabil-
ity that an anchor is an object) and bounding box regression
for better adjusting the anchor.

The Region of Interest Pooling is used to classify the
possible object detected by RPN by extracting fixed-sized
feature maps for each possible object. The R-CNN(Region-
based CNN) consists of two fully connected layers; one is
the classification layer that uses the extracted features to
predict the class that the object belongs to, and the other
is a regression layer that generated adjustments to be made
to the bounding box for precision. The classification also
consists of a background class which is assigned to the bad
proposals.

3.3. Visual Odometry

Generally, Odometry refers to estimating the sequential
changes of position over time using sensors such as wheel

encoder to acquire relative sensor movement. When camera
images are used instead of special sensors such as wheel
encoder or IMU to estimate the robot’s pose, it is called
Visual Odometry (VO) [26]. Based on the type of camera
setup, VO can be either monocular or stereo. Usually, there
are three commonly used VO motion estimation techniques
called: 3D to 3D, 3D to 2D, and 2D to 2D methods [37].
The first two methods are only applicable when 3D data are
available. When depth information is unavailable, 2D to
2D method is used by exploiting the epipolar geometry to
estimate the relative transformation between the calibrated
image frames. Usually, these procedures are followed to
compute VO:

• Features extracted in the first frame F1 and second
frame F2 using ORB features descriptors

• Match features between the two consecutive frames.
Estimate a transformation between the first two frames
using the 5-point algorithm and triangulate the corre-
sponding points using this transformation. OpenCV
makes it relatively easy to perform this step with
cv2.findEssentialMat and cv2.recoverPose function.

• Extract features in the following frame and matches
them with previously extracted features

• Use RANSAC is refined matches in the current frame
and the points reconstructed from earlier frames.

• Use the estimate transformation to triangulate the cur-
rently matched features between frames

• Report from 4 for every iteration

3.4. ROS nodes for Self-driving Car

Figure 3 shows the architecture of the self-driving car in
ROS that was used for the final Udacity’s capstone project.
Figure 3 is simplification of the general architecture shown
in Figure 1. The main task to be completed in this section
was to integrate traffic light detection and classification and
setup PDI controller to follow waypoints.

3.4.1 Perception

Perception sub-system sees the environment with its sensors
and publishes valuable information to other sub-systems.
Notably, we only have implemented traffic light detection
for our project. It is possible to implement segmentation
and obstacle detection algorithms for safe and reliable au-
tonomous vehicles in this sub-section.

Traffic Light Detection Node A crucial part of the ve-
hicle’s self-driving capabilities comes from detecting and
classifying upcoming traffic lights. This node processes
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Figure 2. Three different methods for Lane detection. a) Uses Hough lines, b) Uses perspective transform and histogram, and c) Uses
SCNN model

Figure 3. ROS nodes and topics

images provided by the vehicle’s onboard camera and
publishes upcoming traffic light information to the /traf-
fic waypoint topic. The Waypoint Updater node uses this
information to safely determine if/when the car should slow
down to stop at upcoming red lights. We use the model
trained in section 4.2 to detect and classify traffic lights.
The traffic light detection system was found to be always
lagging several seconds behind the simulator. The vehicle
would often pass the traffic light when the node finally pub-
lished the results for that particular light. One of the reasons
that the detection node being slow was due to the massive
Neural Network parameters.

3.4.2 Planning

The planning module plans the vehicle’s path based on the
vehicle’s current position and velocity, along with the state
of upcoming traffic lights. A list of waypoints to follow is
passed to the control module.

Waypoint Loader It is a simple node that reads the
waypoints along the track and pushes them to the topic
/base waypoints. This node can be used to publish way-
points based on the advanced lane detection module or other
modules that track the environment’s features.

Waypoint Updater This node performs the core path
planning. As seen in Figure 3, it subscribes to three top-
ics to get the entire list of waypoints, the vehicle’s current

pose and the state of upcoming traffic lights. The node
publishes a list of waypoints to follow, where each way-
point contains a position on the map and a target velocity.
Every time the vehicle changes its position, a new path is
planned. First, the closest waypoint to the vehicle’s current
position is found, and then a list is created containing the
next 200 waypoints. Second, the upcoming traffic lights are
analyzed, and speed is adjusted based on the light’s state.
Following rules control the vehicle speed:

• If the vehicle is within 30 waypoints of green light,
speed it slowed to 5 mph.

• If the vehicle is within 50 waypoints of red/yellow
light, slow down with a linearly interpolated speed that
would stop at the light.

• If the car is within 25 waypoints of a red/yellow light,
slow down to 5 mph.

• If the car is less than 4 waypoints from the stoplight,
command full stop.

• In all other cases, command the max speed specified.

The final list of waypoints is then published on the /fi-
nal waypoints topic.

3.4.3 Control

The control module publishes control commands for the ve-
hicle’s steering, throttle, and brakes based on the list of way-
points to follow.

Waypoint Follower This node parses the list of way-
points to follow and publishes proposed linear and angular
velocities to /twist cmd topic.

DBW (Drive By Wire) DBW module is the main mod-
ule that sends commands to the vehicle to drive. Recall, we
have the target linear and angular velocities for each way-
point in the /twist cmd topic. So the DBW needs to ad-
just the vehicle’s state accordingly with the help of three
controllers. Throttle Controller is a simple PID controller
that compares the current velocity with the target velocity
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and adjust the throttle. The throttle gains were tuned that
allowed reasonable acceleration without oscillation around
the set-point. Steering Controller translates the proposed
linear and angular velocities into a steering angle based on
the vehicle’s steering ration and wheelbase length. In order
for a smooth, jerk-free ride, the maximum linear and angu-
lar acceleration rate is constrained. The controller’s steering
angle is also passed through a low pass filter to reduce jitter
from noisy data. Braking Controller is a simple proportion-
ally controller that takes the difference between the current
velocity and the proposed velocity. Similar to the throttle
controller, the proportional gain is tuned to ensure reason-
able stopping distances.

4. Experiment
Four separate experiments were conducted for related

sub-systems required for the self-driving car.

4.1. Lane Detection

As described in section 3.1, we experimented with three
different approaches for lane detection. Figure 2 shows the
output from these approaches on a test image. On average,
basic takes around 1.442s to process six images, advance
takes around 1.803s, and SCNN takes around 9.806s. Note
that SCNN is being run on the CPU. Similarly, on average,
basic takes around 27.117s to process a challenging video
of length 10s, advance takes around 36.759s, and SCNN
takes around 5m 54.175s. Moreover, for a simple video
of length 27s, basic takes around 16.616s, advance takes
around 52.633s, and SCNN takes around 15m 19.947s 2.
The output from SCNN was not satisfactory as it was de-
tecting extra lines outside the lanes. The advanced method
was reasonable faster for the lane detection data and per-
formed well on typical images and challenging scenarios.

4.2. Traffic Light Classification

Bosch Small Traffic Lights Dataset [2] is an accurate
dataset for vision-based traffic light detection. This dataset
contains 13427 images at a resolution of 1280x720 pixels.
There are 15 different labels based on the state of the traf-
fic lights. In our experiments, we merged the 15 different
labels into just four labels: Green, Red, Yellow, and Off.
A pre-trained FasterRCNN model with a ResNet50 back-
bone was used to the speedup training process. We trained
the network for 100 epochs taking around 9hrs on an AWS
server with one NVIDIA Tesla V100 GPUs 3.

4.3. Visual Odometry

The camera matrix was provided with the KITTI
dataset. For features detection, cv2.FastFeatureDector

2The output videos and images from lane detection can be found at
box folder.

3We skipped evaluation on testset to save time

Figure 4. FasterRCNN model successfully detecting traffic lights
in urban environment.

Figure 5. Visual odometry trajectory and ground truth trajectory
from the vehicle in KITTI dataset 00. Red path is the ground truth
and the gradient path is the estimated pose.

was used with minimum features to track set to
1500. Features were tracked in subsequent frames us-
ing cv2.calcOpticalFlowPyrLK. cv2.findEssentialMat was
used to compute the essential matrix by triangulating the
corresponding matching points in subsequent frames, and
cv2.recoverPose was used to compute camera pose from the
essential matrix solving Perspective-n-Point(PnP) problem.
The required camera pose is equivalent to the extrinsic cam-
era parameter with the camera’s translation and rotation in
the global coordinate system.

5. Self-driving car
We cloned the Carnd-Capstone project from the official

Udacity GitHub. The ROS project skeleton was already
provided in the project. The project codebase was based
on ROS Indigo. It only supported python2.7. The first
task was to convert the codebase to Python3 compatible.
We painstaking figured out which packages were needed
for the latest ROS Noetic so this project would run. The
package configuration and making the codebase compati-
ble with ROS Noetic and Python3 was the most challeng-
ing part. The final version of the self-driving car agent
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can be found at https://github.com/aadeshnpn/
CarND-Capstone

The next step in building a minimal self-driving car was
to integrate all the ROS nodes, as shown in Figure 3. The
agent architecture has three main components: perception,
planning, and controller. We use the traffic light detection
module described earlier for perception. The simulator al-
ready provides the agents with waypoints or landmarks to
follow, so lane detection was not used here. Based on the
status of traffic lights, the waypoints are updated with pre-
ferred velocity and steering angle. The DBW (Drive by
Wire) node uses that to generate control signals using a PID
controller. The simulator subscribes to the control com-
mands published by DBW (Drive by Wire) to drive.

We ran the agent several times and noticed that the car
was not following the traffic lights through the traffic light
node was publishing correct information about the lights’
state. After careful analysis, we found out that running the
simulator and the agent in the same machine lags the system
as the simulator consumes the system resources. Also, the
traffic light detection module takes a few seconds to make
an inference on an image. When the traffic light modules
finally publish the state of traffic lights, the car has already
passed the light.

We tried training the Faster-RCNN with VGG as a back-
bone network to mitigate the issue, assuming that it would
reduce the model size, thus speeding inference time. To our
surprise, the estimated time for training the network was
around 78 hrs on AWS p2.xlarge instance (K80 GPU), so
we decided to try a different approach. We found out some
discussion threads that listed the potential issue with the lag-
ging was to do with how ROS initializes and stores the DNN
model. We tried increasing the ROS buffer, but that did not
help.

Neglecting the car’s issue of not following traffic lights,
the car was successfully in droving on the highway road.
Our objective to build a minimal self-driving car agent was
completed but with few caveats:a) the simulator provides
the waypoints/landmarks, b) the vehicle pose/state is also
accessible from the simulator, and c) PID controller was
used though Model Predictive Control (MPC) would be
more efficient. We tried to address these limitations of the
current implementation by integrating the advanced lane de-
tection to create waypoints/landmarks on the fly and use
visual odometry to estimate the vehicle’s pose to feed to
the MPC. This effort to enhance the current implementa-
tion with dynamic waypoints, vSLAM, and MPC became
demanding than anticipated. With the interest of time, it
would be interesting to integrate those new modules as fu-
ture work.

6. Conclusion and Future Work

We explored and implemented core components like lane
detection, visual odometry, and traffic lights detection in
this project. We integrated those components for a min-
imal self-driving car agent. There is definitely room for
improvement. Priority would be to create a unified DNN
that can do semantic segmentation and Traffic light detec-
tion in real-time without lagging. It would be interesting
to run the agent and simulator in different machines to un-
derstand the computation resource constraints better. Also,
visual SLAM needs to be used instead of the manually cre-
ated waypoints that would generalize better for other envi-
ronments. Currently, the PID controller is used for the final
autonomous vehicle, but MPC use needs to be evaluated in
place of the PID controller.

References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M Seitz, and Richard Szeliski.
Building rome in a day. Communications of the ACM,
54(10):105–112, 2011. 3

[2] Karsten Behrendt, Libor Novak, and Rami Botros. A deep
learning approach to traffic lights: Detection, tracking, and
classification. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 1370–1377. IEEE,
2017. 5, 7

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 3

[4] Keenan Burnett, Andreas Schimpe, Sepehr Samavi, Mona
Gridseth, Chengzhi Winston Liu, Qiyang Li, Zachary
Kroeze, and Angela P Schoellig. Building a winning self-
driving car in six months. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 9583–9589.
IEEE, 2019. 3

[5] Alessio Carullo and Marco Parvis. An ultrasonic sensor for
distance measurement in automotive applications. IEEE Sen-
sors journal, 1(2):143, 2001. 3

[6] Qiang Chen and Hong Wang. A real-time lane detection al-
gorithm based on a hyperbola-pair model. In 2006 IEEE In-
telligent Vehicles Symposium, pages 510–515. IEEE, 2006.
2

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
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