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ABSTRACT

Emergence of Collective Behaviors in Hub-Based Colonies Using
Grammatical Evolution and Behavior Trees

Aadesh Neupane
Department of Computer Science, BYU

Master of Science

Animals such as bees, ants, birds, fish, and others are able to efficiently perform
complex coordinated tasks like foraging, nest-selection, flocking and escaping predators
without centralized control or coordination. These complex collective behaviors are the
result of emergence. Conventionally, mimicking these collective behaviors with robots
requires researchers to study actual behaviors, derive mathematical models, and implement
these models as algorithms. Since the conventional approach is very time consuming and
cumbersome, this thesis uses an emergence-based method for the efficient evolution of collective
behaviors.

Our method, Grammatical Evolution algorithm for Evolution of Swarm bEhaviors
(GEESE), is based on Grammatical Evolution (GE) and extends the literature on using
genetic methods to generate collective behaviors for robot swarms. GEESE uses GE to evolve
a primitive set of human-provided rules, represented in a BNF grammar, into productive
individual behaviors represented by Behavior Tree (BT). We show that GEESE is generic
enough, given an initial grammar, that it can be applied to evolve collective behaviors for
multiple problems with just a minor change in objective function.

Our method is validated as follows: First, GEESE is compared with state-of-the-art
genetic algorithms on the canonical Santa Fe Trail problem. Results show that GEESE
outperforms the state-of-the-art by a) providing better solutions given sufficient population
size while b) utilizing fewer evolutionary steps. Second, GEESE is used to evolve collective
swarm behavior for a foraging task. Results show that the evolved foraging behavior using
GEESE outperformed both hand-coded solutions as well as solutions generated by conventional
Grammatical Evolution. Third, the behaviors evolved for single-source foraging task were able
to perform well in a multiple-source foraging task, indicating a type of robustness. Finally,
with a minor change to the objective function, the same BNF grammar used for foraging can
be shown to evolve solutions to the nest-maintenance and the cooperative transport tasks.

Keywords: Swarms; Colonies; Bio-inspiration; Grammatical Evolution
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Chapter 1

Introduction

1.1 Overview

Simple organisms have evolved over millions of years to collectively solve interesting and

important problems. For example, bacteria interact with each other to move across cell

surfaces efficiently by synthesizing large number of flagella [12]; slime molds move between

complex locations using spatial memory [57]; ant colonies have evolved collective behaviors

for foraging, nest defense, path planning and construction [24]; bees are able to select best

sites among many good sites at their disposal [62]; and fish are able to avoid predators by

organizing themselves into collective shapes that deter predation [32].

These organisms are able to solve these myriad problems with local interaction and

without any central governing body. Often, each individual is very limited in the things that

it can achieve whereas the swarms of those individuals can achieve great things. Because

the collective behavior emerges from hundreds or thousands of local interactions, swarm

solutions are often provide solutions that are resilient to agent drop-out and to environmental

disturbances. The proper understanding of these collective behaviors has myriad applications

in economic, computer networks, social behaviors, robotics, health care and many others.

Because of their broad applicability, it is important to find general purpose algorithms that

mimic collective behaviors.

Despite the benefits of modeling the algorithms based on these bio-swarms, only a

few organisms have been explored for their collective behavior; see, for example, [45] which

discusses how little we understand about the constructions methods of termites. One of the
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reasons for slow research in this field is the huge amount of time involved in understanding

individual agent behavior and coming up with the mathematical model to describe both

individual and collective behaviors [5]. Those behaviors were evolved as a result of survival

strategy in a particular environment, taking hundreds of thousands years. If we are able to

mimic this evolutionary process with artificial agents/robots then this will save researchers a

lot of time and resources.

Researchers have created successful algorithms referred to as spatial swarms, meaning

bio-inspired collectives that move or travel together more or less as a collective unit [13,

34, 42, 47, 69, 72, 76]. The properties of the swarms are investigated both with or without

human interaction [3, 14, 22, 70].

Conventionally, mimicking these collective behaviors with robots requires researchers

to study actual behaviors, derive mathematical models, and implement these models as

algorithms. Since the conventional approach is very time consuming and cumbersome, we

worked with an emergence-based method for the efficient evolution of collective behaviors.

The proposed method provides an efficient approach by simplifying the problem into: (a)

modeling the problem, (b) defining objective functions, and (c) specifying primitive behaviors.

Importantly, this work was applied to hub-based colonies such as foraging and nest mainte-

nance, contributing to contemporary efforts to extend the state-of-the-art beyond spatial

swarms.

This thesis describes a framework combining evolutionary computing with Behavior

Tree (BT) to generate swarm behaviors. Also, this work describes a distributed Embodied

Evolution (dEE) algorithm called Grammatical Evolution algorithm for Evolution of Swarm

bEhaviors (GEESE) that evolves desired collective behaviors from a set of primitive behaviors.

The algorithm is online and distributed such that it can take advantage of a large number

of swarm robots or agents. The algorithm evolves behaviors that are well suited for a

given task instead of mimicking the bio-inspired collective behaviors. The algorithm adapts

autonomously to the environment based on the local information and interaction between

2



other robots or agents. Future work should extend the work to enable human interaction and

readability of the evolved behaviors.

1.2 Research Questions

The goal of this thesis can be expressed in the following research question:

How can Grammatical Evolution (GE) be used to evolve effective swarm behaviors for different

sets of tasks using the same Backus–Naur Form (BNF) grammar?

This overarching research question can be addressed by the answering the following specific

research questions:

RQ1 What kind of structure does the BNF grammar need to have to express BT structures

as well as swarm behaviors?

RQ2 How can GE algorithms be extended to work for multi-agent systems?

RQ3 Can BTs be used to represent swarm behaviors instead of FSMs?

RQ4 Will a single grammar be enough to evolve swarm behaviors for different tasks?

RQ5 Will evolved behaviors be better than hand-coded solutions?

1.3 Thesis Layout

The first part of the thesis will introduce the GEESE algorithm. The algorithm’s implemen-

tation and experimental results were published in a scientific research paper, included in

Chapter 2. Next, Chapter 3 addresses the research question posed above in a research paper

that was recently submitted to a scientific conference. Chapter 4 provides the summary of

this thesis and describes future work. Appendix 3.5 presents the programming framework

used for the work in this thesis; the framework is generalizable and publicly available. Finally,

Appendix B presents hand-coded behavior trees for several of the multi-agent problems

addressed in this thesis.
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Chapter 2

GEESE: Grammatical Evolution Algorithm for Evolution of Swarm Behaviors
1

Abstract

Animals such as bees, ants, birds, fish, and others are able to perform complex coordinated

tasks like foraging, nest-selection, flocking and escaping predators efficiently without central-

ized control or coordination. Conventionally, mimicking these behaviors with robots requires

researchers to study actual behaviors, derive mathematical models, and implement these

models as algorithms. We propose a distributed algorithm, Grammatical Evolution algorithm

for Evolution of Swarm bEhaviors (GEESE), which uses genetic methods to generate collec-

tive behaviors for robot swarms. GEESE uses grammatical evolution to evolve a primitive

set of human-provided rules into productive individual behaviors. The GEESE algorithm

is evaluated in two different ways. First, GEESE is compared to state-of-the-art genetic

algorithms on the canonical Santa Fe Trail problem. Results show that GEESE outperforms

the state-of-the-art by (a) providing better solution quality given sufficient population size

while (b) utilizing fewer evolutionary steps. Second, GEESE outperforms both a hand-coded

and a Grammatical Evolution-generated solution on a collective swarm foraging task.

1This chapter is a reprint of the original GEESE [50] paper, which was published in the GECCO’18
conference. Note that a preliminary version of GEESE [51] was published as Extended Abstract at AAMAS’18.
There are three authors, where Dr. Goodrich is my advisor and Dr. Mercer helped us to design BNF grammars.
Most of the inspiration for this paper was based on the following two papers: GESwarm [20] and odNEAT [64].
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2.1 Introduction

Simple organisms have evolved local interactions among individuals that produce useful

collective behaviors: Bacteria interact with each other to move across cell surfaces efficiently

by synthesizing a large number of flagella [12]; Ant colonies have evolved collective behaviors

for foraging, nest defense, path planning and construction [24]; Bees are able to select best

sites among many good sites at their disposal [62], and Fish are able to avoid predators by

organizing themselves in collective shapes that deter predation [32].

Researchers have created successful algorithms that implement what we call spatial

swarms, meaning bio-inspired collectives that move or travel together more or less as a

collective unit [42, 47, 76]. Similarly, there has been significant research on designing bio-

inspired or bio-mimetic distributed algorithms for hub-based colonies like honeybees, termites,

and ants, particularly in optimization [16, 18, 30]. Many such algorithms are problem-specific,

meaning that there is not a general solution for generating individual behaviors that produce

desirable collective behaviors.

There are various forms of representing or controlling swarms including artificial neural

networks, genetic programming structures, logic-based symbolic controllers, behavior-based

controllers, and grammars. One approach to identifying individual behaviors that induce

desirable collective behavior is to use Genetic Programming (GP), a type of Evolutionary

Algorithm. GPs have been successfully applied to search ill-defined complex search spaces;

for some search spaces, the time to find an acceptable solution is prohibitive [33].

Grammatical Evolution (GE) has been applied to problems for which GP can take

too long. For example, in the Sante Fe Trail problem, the best solution produced by a GE

is found more quickly and produces a superior solution compared to solutions produced by

GP [33]. GEs work by restricting the search space by “seeding” the solution space using

domain-specific knowledge. GEs have two main benefits over GPs. Firstly, GEs exploit prior

knowledge, represented in the form of a grammar, which restricts the search space by only

searching through valid grammars. Secondly, GEs exploit a greater distinction between a
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genotype and phenotype than more conventional GPs [52]. These benefits enable GEs to

outperform conventional GPs in some problems.

When multiple agents are distributed in different spatial regions, the search for high-

quality solutions can be accelerated if all the agents start in a different spatial location and

interact with each other, sharing their knowledge of the search space accumulated so far.

Distributed evaluation of fitness and searching different parts of the spatial domain suggest

that a multi-agent GE may generate effective collective behaviors in swarms.

As agents interact with each other, each agent creates a temporary population from

the genomes of its neighbors. Genetic operators like mutation and crossover are performed on

the temporary population. We know of no distributed online GEs for swarms and colonies.

GEESE is evaluated on two problems: the Santa Fe Trail problem and a foraging

problem. For the standard Santa Fe Trail problem, GEESE finds superior solutions in fewer

generations compared to other variants of GE. For the foraging task, GEESE evolves collective

behaviors that successfully accomplished foraging tasks and outperforms both a hand-coded

and a GE-generated solution.

2.2 Background

There are many papers that “program” agents using genetic algorithms, but Yehonatan et

al. [63] were the first to apply GP techniques to evolve Robocode players. They used genetic

programming to produce a code in a tree-like structure. GEs also have been applied to

robot and agent control. Burbidge et al. [4] used GE to generate a program that performed

autonomous robot control.

The above papers used different forms of GE for autonomous control for a single agent,

but the purpose of this paper is to evolve collective behaviors for multi-agent systems. O’Neill

et al. [53] used particle swarm optimization and a social swarm algorithm to generate social

programs. Each particle in the population was randomly initialized, fitness was calculated

for each particle, and its velocity and location were updated using a specific update rule. Li
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Chen et al. [7] combined a GE with a parallel GA to create an parallel evolutionary algorithm

called GEGA. GEGA uses the genotype-to-phenotype mapping process of GE on the initial

solution and the used the resulting phenotype as part of a population that is refined using a

parallel GA.Ferrante et al. [20] developed a framework that could automatically synthesize

collective behaviors for swarms using GE without using communication behaviors.

Cantu-Paz [6] identified three architectures for parallel genetic algorithms: master-

slave, fine-grained, and multiple-population parallel GAs. Vacher et al. [74] described a

multi-agent system guided by a multi-objective GA to find a balance point on the Pareto

front. Stonedahl [66] described a multi-agent learning algorithm with a distributed GA to

solve a bit-matching problem. Silva et. al. [64] developed “odNEAT”, a distributed and

decentralized neuroevolution algorithm for online learning in groups of autonomous robots

that evolve both weights and network topology.

2.2.1 Grammatical Evolution

Grammatical Evolution (GE) is a context-free grammar-based GP paradigm that is capable of

evolving programs or rules in many languages [52, 59]. GE adopts a population of genotypes

represented as binary strings, which are transformed into functional phenotype programs

through a genotype-to-phenotype transformation. The transformation uses a BNF grammar,

which specifies the language of the produced solutions. In GE, there is a central population

of genomes where each genome is assigned a fitness or quality value. Only the portion of the

population having higher fitness values are selected for genetic operations. We illustrate with

an example.

BNF Grammar A BNF grammar is made up of the tuple N, T, P, S; where N is the set

of all non-terminals symbols, T is the set of terminals, P is the set of productions that map

N to T , and S is the initial start symbol and a member of N . When there are a number of

rules that can be applied to the production of a non-terminal, a “—” (or) symbol separates
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the options. Note the difference in how we use “production” and “rule”: a production is the

set of possible things that can be produced for a single non-terminal, and a “rule” is one of

the possible things produced (the right-hand-side of the production). The difference between

terminal and non-terminal symbols is that non-terminal symbols are further expanded by

a production rule whereas terminal symbols are not. A BNF grammar is used to translate

genotype to phenotype.

The example BNF grammar that follows will be used in the Santa Fe Trail problem [36].

Details about Santa Fe Trail problem are explained in Section 2.4.1.

(1)〈code〉 ::= 〈code〉 | 〈progs〉
(2)〈progs〉 ::= 〈condition〉 | 〈prog2 〉 | 〈prog3 〉 | 〈op〉
(3)〈condition〉 ::= if food ahead(〈progs〉,〈progs〉)
(4)〈prog2 〉 ::= prog2(〈progs〉,〈progs〉)
(5)〈prog3 〉 ::= prog3(〈progs〉,〈progs〉,〈progs〉)
(6)〈op〉 ::= left | right | move

Koza gives an in-depth explanation of the above grammar [36].

Genome In GE, the genome defines how the left-derivation of a BNF grammar will proceed.

GEs use genotypes encoded as binary or integer strings. A codon is a group of binary

symbols, usually in a group of 4 or 8, chosen in such a way that there are enough bits

per codon to be able to express both (a) the total number of productions and (b) the

maximum number of right-hand-sides over each production. Consider a binary genome

[001101000010001100100011] of length 24. Let the codon size be 4 for this example. The

codon value for the five codon blocks is just the equivalent decimal values.

Mapping The mapping from genotype to phenotype is as follows: Let c denote the codon

integer, let A denote the left-most non-terminal in the derivation, and let rA denote the

number of right-hand side rules associated with the production for A. GE maps from the
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production for the current non-terminal, A, to the right-hand side rule using the expression

RHSRule = c%rA (2.1)

where % denotes the modulo operator. After a non-terminal is mapped to one of its right-hand

side rules using Equation 2.1, the current codon is moved to the right in the binary string

and the process resumes until no non-terminals remain. The resulting string of terminals is

the program that the agent executes.

Phenotype The output from the mapping process is the phenotype. The phenotype

represents a valid expansion of the BNF grammar. Continuing the example, below is a valid

phenotype program obtained using the genome and grammar described earlier.

if food ahead(move, left)

The above program defines the behavior of an ant for the Santa Fe Trail problem.

The explanation for the phenotype is, “If the food is just one step ahead, move forward; else

turn left”, for this program from the Santa Fe Trail grammar.

Given the genotype-to-phenotype mapping, we can describe how the canonical genetic

operators operate on the genome. The genotype representation is a variable-length string.

The mutation changes an integer to another random value, and one-point crossover swaps a

section of the genetic code between parents.

2.2.2 Santa Fe Trail

The Santa Fe Trail problem [28] is a well-known problem used to benchmark new evolutionary

algorithms. It is a “hard” problem due to evolutionary computing methods not solving it

much more effectively than random search.
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The agent’s task is to find food in a predefined grid structure. The trail is embedded in

a toroidally connected grid of 32×32 cells. The optimal food trail has 144 cells (89 containing

food and 55 being gaps in the trail with no food). The objective of the Santa Fe Trail problem

is to evolve a program that can navigate this trail, finding all the food. An agent can perform

three moves: turn left, turn right, and move ahead.

There exists a standard solution to the Sante Fe Trail problem, one learned using GE,

that serves as a baseline against which GP and GE solutions can be compared [36]. The

baseline solution gathers all 89 food units within 543 moves.

2.3 GEESE

GEESE is loosely inspired by “odNEAT” [64], “Genetic Algorithm for Multi-Agent sys-

tem” [74], and “GESwarm” [20]. GEESE provides an effective way to evolve programs where

each individual agent/robot performs GE in a decentralized and distributed fashion similar

to how “odNEAT” [64] performs neuroevolution. Since each GEESE agent encodes its own

unique genetic instance and can run GE on its own (onboard), GEESE computation can be

distributed.

GEESE is similar to GE in terms of initialization, genetic operators, and genotype-to-

phenotype mapping. GEESE starts with a fixed number of agents initialized with a random

string of integers (genotype). The genotype of an agent is also referred as an agent in GEESE;

i.e, each agent has its own individual genotype. Each agent has an instance of Algorithm 1

onboard.

Let Aj denote agent j, let X = {A1, A2, . . . , AM} denote the set of M agents, let Mj

denote the primary stack/memory of agent Aj, and let Gj denote the genotype of agent Aj.

As displayed in Algorithm 1, each agent Aj is capable of performing three basic functions:

sense, act, and update in a given environment.
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Algorithm 1 Diversity Fitness

Require: sense() //module
for Aj ∈ Neighborhood(Aj) do
Mj ←Mj ∪ {Gi}

end for
return Mj

Require: act() //module
if Mj 6= ∅ then
Mj ←Mi ∪ {Gj}
Mj ← selection(Mj)
Mj ← crossover(Mj)
Mj ←Mj ∪mutation(Mj)

end if
return G∗ arg max{Fitness(Gk) : Gk ∈Mj}

Require: update() //module
if Fitness(Gj) < Fitness(G∗) then
Gj ← G∗

end if
Require: agents ← list(agent,M)

for agent in agents do
agent.sense()
agent.act()
agent.update()

end for

11



2.3.1 Sense

During the sense step, agent Aj uses input from its sensors to get information about the

environment. The sense step is general, meaning that depending on the application an agent

can sense multiple things about the world. General to all applications is the sensing of

neighbors. If agent Aj senses other agents Ai nearby, denoted Neighborhood(Aj), agent Aj

requests each agent Ai ∈ Neighborhood(Aj) to share its genotype Gi. The agent then

temporarily stores the genotypes of nearby agents in Mj.

Consider two methods for determining agent Aj’s neighbors. First, use a Euclidean

distance threshold, where all agents within a given distance are considered neighbors.

Second, randomly sample from all agents in the population regardless of Euclidean dis-

tance. For this method, the sensing capability of the agents in X is controlled by the

INTERACTION PROB parameter. A greater parameter value means that there is a

higher probability of agents being in each other’s neighborhoods.

2.3.2 Act

During the act step, agent Aj checks its memoryMj where it stores all the genotypes received

from agents in its neighborhood. If its memory Mj is empty, then it doesn’t perform any

action; otherwise, it performs a series of operations. First, it adds its own genotype to the

memory. Second, a selection operator is performed on its memory to get parents. Selection

samples from memory a subset of genotypes to be used to form a new population; the

paragraph below describes selection methods. Third, the crossover operator is applied to the

parents to add children to the population; parents are discarded from the population after

crossover. The set of children is mutated using a mutation operator, fitness is evaluated for

the set of children, and the mutated genotypes are added to the population. The highest

performing child, G∗, is returned.

We explored four variations of selection operators: tournament, truncation, NSGA-II

and Pareto tournament [19]. Each selection operator returns the best individuals from
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the Mj, which are termed “parents”. We conducted experiments with these operators and

subjectively chose the tournament operator for its efficiency.

2.3.3 Update

During the update step, an agent checks whether the best genotype returned by the act step

is superior to the current genotype. Agent Aj will replace genotype Gj with G∗ if the fitness

of G∗ exceeds the fitness of Gj.

2.3.4 Differences Between GEESE and Conventional GE

The advantage of GEESE over standard GE is that each agent is capable of applying

genetic operators on its own. Using GEESE, each agent is able to compute GE onboard

without centralized storage of genome population; i.e. GEESE computation is distributed

and performed online. This enables each agent to search the evolutionary fitness landscape

starting from a different location in the landscape. Instead of evaluating the whole population

at each generation, GEESE evaluates locally, increasing the chances of average individuals to

reach the next generation. This enables GEESE to maintain genetic diversity and slow down

convergence.

To illustrate this increase genetic diversity, consider a GEESE population with nine

agents and consider how three agents, A1, A2, and A3, might update their genomes. For

simplicity, assume that agents {1, 2, 3} move randomly and perform GEESE in a sequential

order as illustrated in Figure 2.1. Each agent in the blue circles, exchanges information with

neighbors in the pink circles and perform sense, act and update methods of Algorithm

1. Since each agent performs the genetic operations locally, i.e. the genetic operations are

performed using only genetic information from neighboring agents, the genetic diversity

between groupings is likely to stay distinct for several generations. Also, if the agent doesn’t

find any neighbors, it doesn’t perform any genetic operations and holds on to its genome.
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This makes it possible that individual agents who initially have average fitness, relative to

other agents, to have a chance to take part in genetic operations.

Figure 2.1: Three conceptual evolution steps in GEESE

The effect of preserving genetic diversity is illustrated in Figure 2.2, which represents a

conceptual fitness landscape for the nine agents from the previous example. If a standard GE

algorithm is applied, only the top performing individual or individuals is picked to perform

genetic operations among the global population. For this fitness landscape, agent A4 and A7

would be picked and GE would be stuck at a local minimum. Since standard GE ignores

other individuals, there is a higher chance of loss of diversity early in the search, resulting in

slower convergence or a higher probability of converging to a suboptimal solution.

By contrast, in GEESE the genetic operations are applied to local neighborhoods,

allowing some average-performing individuals to survive to the next generation. For this

fitness landscape, agent A8 and A3 will also take part in genetic operation even though

agent A4 and A7 are the top performers. Thus, GEESE inhibits premature convergence and

increases genetic diversity with the use of local genetic operators. This pattern of avoiding

premature commitment to a local “hill” in the fitness landscape is well-known and is utilized,

for example, in beam-search [58].

GEESE defines ‘generation’ slightly differently than GE. A single generation of GEESE

refers to the spontaneous execution of each agent’s methods (sense, act, and update). Since

the act and update method is only activated when the agent senses other neighbors, in each

generation only a few agents will be genetically active.
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Figure 2.2: Conceptual fitness landscape with nine agents.

2.4 Experiments

Section 2.4.1 compares GEESE against GE on the Santa Fe Trail problem [28]. Section 2.4.2

then demonstrates the use of GEESE to evolve individuals rules to enable collective foraging.

All the experiments reported in this paper are carried out using PonyGE2 [19] and GEESE

code is merged into PonyGE2. We experimented with 50, 100, 200, 400, and 1000 runs

for each experiment reported below. Since lengthy runs didn’t reveal significant differences,

results are presented for 50 runs.

2.4.1 Santa Fe Trail

To evaluate GEESE, we define fitness to be the total number of food units collected by the

agents on the trail. Fitness reaches its maximum value when all the food units are collected.

Also, we define minimum steps to be the minimum number of steps the agent needs to take

in order to collect all the food units, i.e. 89. The BNF grammar used for this experiment

was described in Section 2.2.1.
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Santa Fe Trail Using Standard Fitness function

50 evolutionary runs were conducted for both conventional GE and for GEESE. Parameters

used in the simulations are shown in Table 2.1. Two parameter values from Table 2.1 need

discussion. First, GE has a population of genomes, denoted by Genetic Population Size,

which is a global collection of genomes on which the genetic operators act. GEESE doesn’t

have a shared population of genomes, but rather Number of Agents, which defines a unique

number of agents that form neighborhoods with probability Agent Interaction Prob. Because

neighborhoods are probabilistic, the neighbor relation is asymmetric. Agents receive genomic

information from their neighbors to create a temporary population on which the genetic

operators act.

Second, the Maximum Codon Int is the maximum allowed integer that can be produced

by the codon, c, in Equation 2.1.

Parameters GE GEESE Novelty
GE

Novelty
GEESE

Genetic Population Size 100 N/A 100 N/A
Number of Agents N/A 100 N/A 100
Agent Interaction Prob N/A 0.85 N/A 0.85
Maximum Generation 50 50 50 50
Mutation Probability 0.01 0.01 0.01 0.01
Crossover Probability 0.9 0.9 0.9 0.9
Maximum Codon Int 1000 1000 1000 1000

Table 2.1: GE/GEESE parameters used for the Santa Fe Trail problem.

Figure 2.3 demonstrates that GEESE converges to a solution faster than standard

GE. The solid line is the mean fitness. The shaded region represents one standard deviation

across the 50 trials.

GEESE required fewer generations with a smaller effective population size to solve the

Santa Fe Trail in comparison with standard GE. The hit rate is the ratio of the total number

of successful programs which found all 89 food units to the total number of experiment runs.

The hit rate for Standard GE with 50 runs is just 6% whereas the hit rate from GEESE
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is 57%. This shows that GEESE, a decentralized and on-line GE algorithm, outperforms

standard GE in the Santa Fe Trail problem.

Figure 2.3: GEESE converges quicker than GE.

Santa Fe Trail Using Novelty Search

Lehman et. al. [41] introduce novelty search techniques and Urbano et al. [73] used Novelty

Search (NS) techniques to improve the performance of GE. Objective-based fitness is replaced

by fitness functions that favor novelty in the genetic population. The idea is not to select

the fittest individuals for reproduction but rather those with the most novel behaviors.

Novel individuals are rewarded, thus favoring exploration of different phenotypical behaviors
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regardless of their fitness. The idea is that by exploring the behavior space without any goal

besides novelty, ultimately an individual with the desired behavior will be found.

NS requires the definition of distances between behavior descriptors [73]. Those

descriptors may be specific to a task or suited for a class of tasks. The descriptors are normal

vectors that capture behavior information along the whole evaluation or simply sampled at

particular instants. Given a behavior function and a distance metric, the novelty score of an

individual is computed as the average distance from its k-nearest neighbors in the population

ρ(x) =
1

k
∑

y∈Neighborhood(x)
Dist(x, y)

Urbano et al. [73] used three behavior descriptors for the Santa Fe Trail problem: the

amount of food eaten, food eaten sequence, and step sequence. We will refer to these behavior

descriptors as novelty1, novelty2, and novelty3, respectively. These behaviors descriptors are

implemented exactly as described in the paper.

50 evolutionary runs were conducted for both GE with NS using the parameters

detailed in Table 2.1. It is evident from Figure 2.4 that GEESE converges to the solution

faster than standard GE with NS.

Figure 2.4: GEESE with NS converges quicker than GE with NS.
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One of the programs evolved by GEESE using novelty search is shown in Figure 2.5.

This program was able to complete the trail in fewer steps than any other known solution to

the Santa Fe Trail problem, including those given by Urbano [73].

Figure 2.5: The evolved program that solved the Santa Fe Trail problem is just 324 steps.

Additionally, GEESE with NS has a higher hit rate than standard NS. The hit rate

for standard NS with 50 runs is just 26% whereas the hit rate from GEESE with NS is 58%.

Using the concepts from NS and combining it with GEESE, GEESE outperformed all known

solutions to the Santa Fe Trail problem by solving it in minimum number of steps. Table 2.2

shows relevant performance metrics over many different algorithms. Values not presented in

the original work are marked as “N/A”. λ-LGP is a variant of GP that outputs sequence of

instructions instead of the tree-like structure of general GP using mutation and replacement

genetic operations. λ-LGP outperforms GEESE in solution quality, but no computation time

is given and λ-LGP is not a distributed algorithm. Since, GEESE is not tailored to solve

only Santa Fe trail problem it has slightly lower success rate than other tailored algorithms.

Sensitivity

Two parameters had a significant impact on GEESE performance: (a) Interaction Probability

(IP) and, (b) number of agents. A high value of interaction probability correlates to a higher

chance of agents interacting frequently with one another enabling them to share genetic

information between them. As shown in Figure 2.6, when the IP is close to 1, GEESE

19



Algorithms Mean
Fitness

Success
Rate

Minimum
Steps

Koza GP [36] N/A N/A 543
Cartesian GP [48] N/A 0.93 N/A
MuACOsm [8] N/A N/A 394
λ-LGP [65] 89 1 N/A
GE [26] 80.1 0.63 N/A
GE (Repair) [71] 75.02 0.32 N/A
Grammatical Swarm [53] 80.18 0.58 N/A
Attribute Grammar [31] N/A 0.85 N/A
GE (Novelty) [73] 77.88 0.41 331
GE (Constituent) [21] N/A 0.9 337
GEESE 84.1 0.6 324

Table 2.2: Comparison with state-of-the-art methods for Santa Fe Trail.

performs worse than when IP is lower. The reason is that with IP near 1, GEESE degenerates

to standard GE. Figure 2.6 shows performance for IP ∈ {0.2, 0.4, ...0.99}.

Figure 2.6: Average fitness for varying interaction probabilities.

In addition to IP, performance varied as a function of the number of agents. An

increase in the number of agents meant each agent would start in a different location of

the search space; i.e. a large section of search space will be explored during initialization.

Figure 2.7 illustrates that the increase in the number of agents enables GEESE to reach the

solution in fewer generations.

20



Figure 2.7: Average fitness with varying number of agents.

Summary

The performance of GEESE was superior to other variants of GE as seen in Table 2.1. It was

able to solve the Santa Fe trail problem in fewer generations and using a smaller set of agents.

Additionally, one evolved program collected all the food in the Santa Fe Trail problem in

fewer steps than any other solution derived using a GE.

2.4.2 Swarm Behavior

This section applies GEESE to discover agent behaviors that enable a swarm to perform a

foraging task.

Problem Description

Figure 2.8 illustrates a foraging scenario known as the center place food foraging problem [68].

The agent’s task is to collect food from a source region in the environment and bring the

food to a hub region in the environment. A source has following properties: (a) it has a fixed

number of food units available, (b) a single agent can take only one food unit per visit, and
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Figure 2.8: A foraging environment with one hundred agents, a hub, and a single food source.

(c) the source location is anywhere within a pre-defined bounded area except for within a

fixed distance from the hub.

A hub acts as a nest to the agents. Initially, all the agents are located inside the hub.

Agents carry the food units from source to hub where the food is stored. Agents do not have

prior information regarding the source location. Agents carry as many food units back to the

hub as possible during a fixed time frame.

Agent Behavior

Recall that GEESE creates a program from a user-specified grammar. Thus, the first step for

applying GEESE to the foraging problem is to specify the grammar. Section 2.4.2 presents

and describes the grammar.

Grammar

The grammar used for this experiment is:

(1)〈start〉 ::= 〈ruleset〉
(2)〈ruleset〉 ::= 〈rule〉 | 〈rule〉 〈ruleset〉
(3)〈rule〉 ::= 〈state〉 〈pc〉 〈transition〉
(4)〈pc〉 ::= 〈bool〉 〈bool〉 〈bool〉 〈bool〉 〈bool〉 〈bool〉 〈bool〉
(5)〈transition〉 ::= 〈change state〉 | 〈change mem〉
(6)〈change state〉 ::= 〈prob〉 〈state〉
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(7)〈change mem〉 ::= 〈prob〉 〈id〉 〈bool〉
(8)〈state〉 ::= randwalk | tosource | tonest | dropcues |

pickcues | sendsignals | recsignals

(9)〈bool〉 ::= false | true | don’t care

(10)〈id〉 ::= dropfood | wantfood

(11)〈prob〉 ::= 0.1 | 0.2 | 0.5 | 0.7 | 1.0

(12)〈bool〉 ::= true | false

Each non-terminal can be expanded either to groups of non-terminal plus terminal

symbols or to groups of terminal symbols. A valid string is produced only when all non-

terminals have been expanded. Once GEESE has generated a valid string, the agents sense,

act, and update.

Productions (1) and (2) expand the start non-terminal into a set of productions and

rules. The productions produced by this grammar encode a probabilistic state machine

with one-bit of internal memory. The agent uses this state machine to interact with the

environment. Production (3) defines a rule as having three parts: states, preconditions, and

transitions.

States Agent behaviors are determined by the state of the agent. Each state generates a

low-level behavior, which is an activity that an agent can execute in the environment. The

low-level behaviors are defined by the terminal symbols of Production (8). Four behaviors

are communicative: dropcues, pickcues, sendsignals, and recsignals. Three behaviors are

non-communicative: randwalk, tonest, and tosource, which move the agent around. There

are two boolean internal states stored in agents memory: wantfood and dropfood. These

values are checked by precondition check: Pdrop food and Pwant food described in the next

section.

• Brandwalk Move in random direction.

• Btonest Move towards the nest.
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• Btosource Move to the source.

• Bdropcues Drop pheromone cues in the environment before it moves. The cue contains

the direction of a source.

• Bpickcues If cues are found in the environment, pick up the cue, read the information

from that object, and change internal memory to reflect the knowledge from the cue.

• Bsendsignals Broadcast information in a fixed radius around it. The signal is information

about a discovered source.

• Brecsignals If a signal is found, accept the information from the signal and change internal

memory by adding the knowledge acquired from the signal.

Preconditions Productions (4) and (9) expand < pc > into a precondition string of boolean

bits with length 7. The seven bits in the precondition string correspond to: Phas food , Pon nest,

Pon source , Pdrop food , Pwant food , Pon signals and Pon cues. Validating the preconditions are

done during sense step. The set of preconditions are “and”-ed together, meaning all

preconditions must be satisfied.

Transitions Productions (5)-(7) specify probabilistic transitions between states. Each

transition is associated with a probability value pi. Provided that all preconditions are met,

the transition is executed with probability pi. Production (6) defines a behavior transition

with a certain probability to the specified next state. Production (7) defines the transition

of internal memory; there are two internal states, dropfood and wantfood, as defined in

production (10). Production (7) has three arguments: the probability of changing, the name

of the internal state variable to change, and internal state variable’s new value. The change

in internal state changes the evaluation of the precondition check.
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Evolutionary Setup

Fifty evolutionary runs are executed. Each evolutionary run lasts 50 generations and involves

100 agents. A single-point crossover with probability 0.9 and a mutation probability of 0.01 is

used. A generational-type of replacement is used. Tournament selection chooses individuals

used for crossover.

In the experiments, the size of the food source depletes as the agents consume food.

The agent capacity of sensing food in the environment is directly proportional to food size.

So, using “the total time required to collect all food” as a fitness metric, in this case, is not

feasible because some small “scraps” of depleted food may never be found. Thus Fitness is

defined as the total number of food units collected during a fixed time period. As discussed

in Section 2.4.1, algorithm performance for a given problem is dependent on the number of

agents. Using the same fixed time for experiments with a varying number of agents will give

inaccurate fitness metric; i.e. for more agents less time should be allocated when compared to

fewer agents. Careful evaluation of the hand-coded solution using varying numbers of agents

indicated that 284 fixed time steps produces reliable fitness evaluation results for 100 agents.

Results

We created a hand-coded benchmark for comparison. The benchmark consisted a set of 13

rules from the grammar 2.4.2. The hand-coded program was able to collect 77 units of food

in an average of 284 time steps. We also ran standard GE.

50 evolutionary runs for both standard GE and GEESE were performed. Using

standard GE, the evolved programs were able to locate the food source in the environment

and bring back the food to the hub. On average, 56 units of food were collected by the

agents using standard GE, which is fewer than the hand-coded benchmark. Moreover, the

evolved programs lacked communication behaviors, even though the grammar was capable of

expressing communication. Interaction and communication enable ants and bees them to

solve complex problems [24].
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GEESE evolved programs that were able to collect food efficiently by making use of

communication behaviors. The evolved program was more efficient than the hand-coded

program; one evolved program had only 8 rules in contrast to the 13 rules in the hand-coded

program. The evolved program on average collected 83 units of food in 284 time steps which is

higher than the benchmark value. The evolved program contained communication behaviors.

One of the benefits of using GE for the evolution of swarm behaviors is that evolved

behaviors are expressed as a human-readable program. Two of the rules in the evolved

program deserve mention. The first rule says if the agent is in randwalk or tosource state

and if it satisfies all the precondition then it has 0.7 chance of transitioning to recsignals state.

Simply put, if the agent is wandering around or heading to the source then it occasionally

transitions to listening for signals; see Appendix. The second rule is obvious, namely when

the agent arrives at the hub and drops its food, it returns to the source. Although the

grammar involved both signals (e.g., communication) and cues (e.g., pheromones), only

signaling behaviors evolved; a single communication behavior was enough to efficiently solve

the foraging problem.

2.5 Future Work

GEESE showed promising results on the Santa Fe Trail problem, and it should be tested on

other GE problems. In addition, GEESE should be applied to developing agent behaviors for

other colony-based tasks like construction, cleaning, and defense. Other future work should

explore whether GEESE would still produce effective rules when foraging in a wide range of

complex environments.

2.6 Summary

This paper presented the GEESE algorithm, a grammatical evolution algorithm for a multi-

agent system. Results demonstrated the effectiveness of GEESE on the Santa Fe Trail

problem, outperforming the state of the art in terms of minimum steps to solve the problem.
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Additionally, GEESE was used to evolve individual behaviors that lead to successful colony-

level foraging, outperforming behaviors evolved by conventional grammatical evolution as

well as hand-coded individual behaviors. Finally, results illustrated that the agent behaviors

could be interpreted by humans.
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Chapter 3

Designing Emergent Swarm Behaviors Using Behavior Trees and Grammatical

Evolution
1

Abstract

It is difficult to design collective artificial swarm behaviors that generalize through diverse

sets of environments. Evolution has given collectives like ants, bees, and termites the ability

to perform diverse behaviors efficiently without any centralized control. This paper introduces

an algorithm and grammar that evolve problem-specific collective behaviors by specifying

problem-specific fitness functions. An agent grammar is introduced that enables the GEESE

multi-agent grammatical evolution algorithm [50] to evolve Behavior Tree (BT) programs.

Given human-provided, problem-specific fitness-functions, the learned BT programs encode

individual agent behaviors that produce desired swarm behaviors. We verify the robustness

properties of the framework by providing empirical evidence on four different problems:

single-source foraging, multiple-source foraging, collective transport, and nest maintenance.

The evolved behaviors outperform hand-coded solutions for each task.

1This chapter is a reprint of the paper, which was submitted in the conference. The paper is under review.
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3.1 Introduction

Bio-inspired collectives like honeybee, ant, and termite colonies provide elegant distributed

solutions to complex collective problems like finding food sources, selecting a new site, and

allocating tasks. Effective collective behaviors emerge from biological swarms through local

interactions (see, for example, [25, 61, 70]).

Despite the potential benefits of bio-inspired algorithms, only a few organisms have

been explored for their collective behavior; for example, very little is understood about the

construction methods of termites [45]. One reason for slow research is the effort involved

in understanding individual agent behavior and creating mathematical models to describe

both individual and collective behaviors [5]. Mimicking an evolutionary process with artificial

agents may yield useful collective behaviors in a reasonable time.

Conventional approaches for evolving swarm behaviors used Finite State Machines

(FSM) with or without neuro-evolutionary algorithms [20, 35, 50, 55, 56]. When the system

is complex and the number of states is huge, a hierarchical finite state machine (HFSM) offers

benefits [2, 75]. Unfortunately, HFSMs must trade-off between reactivity and modularity [10].

Also, behaviors encoded in HFSMs can be hard to debug and extend [44]. Behaviour Trees

(BTs), which are useful in game design, overcome some HFSM limitations [27].

BTs have recently been used to evolve behaviors for robot swarms. Jones et al. [29]

used genetic evolution algorithm to evolve a BT for a Kilobot foraging task. The evolved BT

included ten primitive behaviors and performed the task in simulation and reality.

Distributed grammatical evolution coupled with BTs might be adequate for generating

swarm behaviors. This paper presents a framework combining a distributed evolutionary

algorithm called GEESE [50] with BTs to generate swarm behaviors. The framework is

similar to Simon et al. [29], but decentralized Grammatical Evolution is used in-place of

vanilla genetic programming. There are two important differences between the use of GEESE

in this paper compared to Neupane et al. prior work: First, the grammar that generated

genotypes was redesigned to allow BT programs to be the evolutionary phenotype. Second, a
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fitness function was designed to promote not only task-specific success but also diversity and

curiosity.

We identified twenty-eight primitive individual behaviors designed to mimic behaviors

frequently seen in the swarm literature. We then design a BNF grammar that embeds

the primitive behaviors as BT nodes, and claim that the grammar is general enough to

solve many collective spatial allocation tasks. To test the claim, we evaluate four canonical

swarm problems: single-source and multiple-source foraging, cooperative-transport, and nest

maintenance. For each problem, the performance of the evolved swarm behaviors are compared

to the results from hand-coded counterparts.

3.2 Related Work

Evolutionary robotics (ER) is useful for generating autonomous behaviors. Early work applied

neural-network-based evolving control architectures to visually guiding robots [9]. Lewis

et al. [43] applied staged evolution of a complex motor pattern generator for the control

of a walking robot. Stephan et. al. Doncieux et al. [15] aggregated achievements of ER

and claimed that ER’s agent-centered paradigm and behavior-based selection process allows

challenging phenomena to modeled and analyzed by statistics-based processes.

Evolving swarm behaviors was first described in [38], which showed that individuals

don’t need to possess complex capabilities for effective swarm behaviors. Kriesel [37] developed

a generic framework for the evolution of swarm behaviors. Kriesel’s framework contained

distributed evolution software for efficient distributed evolution computing, a swarm simulation

engine with real-time physics, and a topology-evolving neural network.

Duartel et al. [17] demonstrated an evolved neural net-based controller in a real and

uncontrolled environment for homing, dispersion, clustering, and monitoring with ten aquatic

surface robots. Key properties of swarm intelligence-based control were demonstrated, namely

scalability, flexibility, and robustness.

30



Node Succeeds Fails Running

Sequence If all children succeed If one child fails If one child returns running
Selector If one child succeeds If all children fail If one child returns running
Action Task completion Task impossible to complete Task being computed
Condition If true If false Never

Table 3.1: Control Flow details for BT nodes.

Many ER approaches use Neural Networks (NNs) for evolving a robot controller.

However, NN models are hard to reverse engineer and are not transparent, meaning that it is

difficult to figure out why the algorithm choose a certain action during execution. A viable

alternative to NN models is Genetic Programs (GPs), particularly Grammatical Evolution

(GE). Ferrante et al. [20] used GE to build a framework to evolve foraging behaviors than

can be traced back to individual-level rules.

Neupane et. al. [50] developed a multi-agent variant of Grammatical Evolution (GE)

to evolve swarm behaviors. Their approach was able to perform better in a canonical GE

task called the Sante Fe Trail problem, and successfully evolved foraging behaviors that

outperformed a hand-coded solution and other GP-based solutions. The evolved behaviors

were represented as a FSM.

Representing swarm behaviors with FSMs gets troublesome when the number of

states increases. Hierarchical Finite State Machines (HFSMs) and Probabilistic Finite State

Machine are often used to overcome these limitations. BT representations are equivalent to

Control Hybrid Dynamical Systems and HFSMs [46], and BTs promote increased readability,

maintainability, and code reuse [11].

Scheper [60] used a BT in DelFly drone to perform a window search and fly-through

task. The evolved BTs performed well in both simulation and in the real world. Jones et

al. [29] used genetic evolution to evolve BT to perform a foraging task. Jonas et al. [40] used

BTs with AutoMoDe to perform foraging and aggregation.
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3.3 Behavior Trees Overview

BTs are composed of a small set of simple components but they can give rise to very rich

structures. A BT is a directed rooted tree where the internal nodes are called control flow

nodes and leaf nodes are called execution nodes [11]. Each node in the tree can be associated

as parent or child nodes. The root node in a BT is the one without parents and all other

nodes have one parent. The control flow nodes have at least one child.

The execution in BTs starts from the root node by generating signals or control flows,

often called ticks, with a particular frequency. Signals and control flows are sent from a

control flow node to its children. After receiving a tick, the nodes can be only in one of the

following three states: running, success or failure. Running indicates that processing for that

node is ongoing, success indicates that the node has achieved its objective, and anything else

is a failure.

The execution nodes in this paper are based on the primitive behaviors of bio-swarms.

We use a python-based BT implementation [67]. A variant of the GE algorithm called

GEESE [49] is used to convert a colony-specific grammar, written to produce BT programs,

into the phenotype of the agents. The phenotype is an executable BT program. A detailed

discussion on the evolution of a BT via GEESE is presented in Section 3.5.1.

In many BT formulations, there are four categories of control flow nodes: Sequence,

Selector, Parallel, and Decorator ; and there are two categories of execution nodes: Action

and Condition. The parallel control node is not used in our work. A memory module known

as the Blackboard holds relevant BT data. We use a simple blackboard with a global scope,

but a formalism that doesn’t share data between tree instances. Table 3.1 summarizes what

each BT node type can do; for more information, see [11].
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3.4 Swarm Grammar

This section describes the swarm grammar used with GEESE, and identifies important

elements in the tasks to be performed.

Grammatical Evolution (GE) is a context-free grammar-based genetic program

paradigm that is capable of evolving programs or rules in many languages [52, 59]. GE adopts

a population of genotypes represented as binary strings, which are transformed into functional

phenotype programs through a genotype-to-phenotype transformation. The transformation

uses a BNF grammar, which specifies the language of the produced solutions. In GE, there is

a central population of genomes where each genome is assigned a fitness or quality value. Only

the portion of the population having higher fitness values are selected for genetic operations.

This paper uses a specific GE algorithm called GEESE [50], which was designed for

distributed multi-agent systems. Since the BNF grammar guides the genotype-to-phenotype

mapping process, proper design of the BNF grammar is critical in GE. A contribution of

this paper is a BNF grammar that allows BT programs to be created for a variety of swarm

problems.

3.4.1 Grammar Structure and Rules

The BNF grammar is shown below. Every swarm experiment in this paper use this grammar

to evolve task-specific behaviors. The BNF grammar is the critical GE element that maps the

genotype of the agents to a phenotype, encoded as a valid BT program. The BT program is

used by the agents to act in the environment. The grammar incorporates individual agent

rules that can produce a valid BT which induce desirable swarm behaviors.

(1)〈s〉 ::= 〈sequence〉 | 〈selector〉
(2)〈sequence〉 ::= 〈execution〉 | 〈s〉〈s〉 | 〈sequence〉 〈s〉
(3)〈selector〉 ::= 〈execution〉 | 〈s〉〈s〉 | 〈selector〉 〈s〉
(4)〈execution〉 ::= 〈conditions〉 〈action〉
(5)〈conditions〉 ::= 〈condition〉 〈conditions〉 |

〈condition〉
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(6)〈condition〉 ::= NeighbourObjects |

IsDropable 〈sobjects〉 | NeighbourObjects 〈objects〉 |

NeighbourObjects 〈objects〉 invert |

IsVisitedBefore 〈sobjects〉 | IsCarrying 〈dbjects〉 |

IsVisitedBefore 〈sobjects〉 invert |

IsCarrying 〈dbjects〉 invert | IsInPartialAttached 〈dbjects〉 |

IsInPartialAttached 〈dbjects〉 invert |

(7)〈action〉 ::= MoveTowards 〈sobjects〉| Explore |

CompositeSingleCarry 〈dobjects〉 |

CompositeDrop 〈dobjects〉 | MoveAway 〈sobjects〉 |

CompositeMultipleCarry 〈dobjects〉 |

CompositeDropPartial 〈dobjects〉 |

CompositeDropCue 〈sobjects〉 |

CompositePickCue Cue |

CompositeSendSignal 〈sobjects〉 |

CompositeReceiveSignal Signal

(8)〈sobjects〉 ::= Hub | Sites | Obstacles

(9)〈dobjects〉 ::= Food | Debris

(10)〈cobjects〉 ::= Signal | Cue

(11)〈objects〉 ::= 〈sobjects〉 | 〈dobjects〉

The right-hand side of the production rule 1 defines the sequence and selector BT

control structures. Production rules 2 and 3 recursively expand the nodes. Production

rules 4 and 5 recursively define execution nodes, actions and conditions. Thus, the first

five production rules in the grammar define the way the control nodes of the BT can be

constructed. The production rules were devised so that the grammar can express many

different BT shapes of arbitrary depth. More specifically, the first five production rules
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should be sufficient to generate any valid structure of BTs that do not use a parallel control

structure.

Initial grammar designs placed the twenty-eight primitive behaviors directly in pro-

duction rules 6 and 7. Primitive behaviors are atomic behaviors that represent the lowest

level of behavior granularity. Examples include Move, DoNotMove, IsVisitedBefore, etc.

Preliminary results showed appropriate swarm behaviors rarely evolved because finding useful

combinations of primitive behaviors required a very big search space.

There were subjectively obvious combinations of primitive behaviors that we used

to reduce the search space. The grammar above adopts a clustering approach, reducing

the total behaviors to sixteen (rules 6 and 7). High-level behaviors include MoveTowards,

CompositeDrop, etc. The MoveTowards behavior is the combination of GoTo, Towards, and

Move primitive behaviors. These primitive behaviors were combined using sequence control

structure from BT. Similarly, other high-level behaviors were combined using subjective

choices of primitive-behaviors.

Production rule 8 defines the general static elements in the swarm environment,

specifically a hub, sites, and obstacles; see subsection 3.4.2. Production rule 9 defines the

dynamic objects in the environment, specifically food and movable debris.

3.4.2 Grammar Literals

We now define a few important elements in swarm experiments: hub, source, cue, signal,

debris, and food. These elements correspond to the literals in the grammar from the

previous subsection.

A hub acts as a nest/home to the agents. Initially, all the agents are located inside

the hub. The radius and location of the hub may vary in the experiments. Modeled after

ant and bee colonies, a hub is the central place where most of the local communication and

interaction between agents occurs.
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A source or site is a region in the environment which contains a fixed number of food

units, which determines its quality. The radius and location of the source/site may vary in

the experiments and there could be more than one sources in a particular experiment.

Cues and signals are the communication mechanisms in the swarms. A cue is a

stationary object placed in the environment by an agent that contains information about

the states of the environment. Other agents must be present physically at the location of

the cue to “read” the information. One example of the cue-based communication is the

pheromones deposited by many ants species while foraging. A signal is modeled as a mobile

object, connected the agent, that broadcasts information about the states of the environment.

Other agents can “read” the information from the signal when they are within the signal

radius.

Debris are the scattered pieces of waste in the environment. These objects obstruct

the trail of the agents and agents want this debris to be far away from their usual routes and

other important places like the hub and sites.

3.5 Framework

The framework “Swarm” [49] is a Python based Agent-Based Modeling framework. This

framework encodes a variant of Grammatical Evolution (GE) algorithm called GEESE [50].

The swarm framework enables three capabilities. First, the framework allows a user to quickly

create, evolve, and test swarm-based behaviors using built-in core components (spatial grids,

agent scheduler, evolution algorithms, and BTs) or customized implementation. Second, the

framework allows behaviors to be visualized using a browser-based interface. Third, the

framework provides data analysis tools.

The swarm framework consists of five major modules: model, agent, objects, space,

and time. The model module holds the model-level attributes (spatial space), manages the

agents and objects, and schedules. The model module has a special function called step,

which sends signals to all the elements in the environment. Through steps, the model module
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defines the environment in which the tasks are performed. The agent module holds the

agent-level attributes (sensors, actuators) and a step function. The objects module holds

the definitions of all environmental objects like Hub, Source, Food, Debris, Obstacles and

others. The space module defines a spatial structure using a dynamic grid instance with an

easy interface to get information about the objects in the space.

The time module defines the scheduler, which controls the order of the agents’

activation. At each step of the model, the agents are activated based on the scheduler. Then,

each agent activates their BT, changing them internally, interacting with one other, and/or

the environment. Thus, the step function coordinates the simulation across all major models

(model, agent, and time).

3.5.1 Agents

Agent properties are similar to the agents in previous instances of the GEESE algorithm [50]

and included three basic functions: sense, act, and update. Furthermore, each agent is capable

of performing genetic operations on its own. In this paper, sense and update has been

encoded as BT elements whereas act function is implemented as a step function. The step

function holds the step trigger for an agent’s BT program. So, the agent’s main components

are GEESE for grammatical evolution and a BT module to act in the environment.

Every agent is initialized with a fixed random string of integers; this random string is

the agent’s genotype. Since each agent has all required methods to compute genetic operations,

each agent converts the genotype into a phenotype using the Genotype-Phenotype mapping

process. This mapping process takes the BNF grammar and genotype as input and uses

the mathematical expression from [50]to convert the genotype into a valid BT program

(phenotype).
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3.5.2 Simulator

In many previous GE and GP problems, an episodic learning environment is used. Episodic

learning allows an agent to learn a good policy by focusing on long-term rewards. Every-time

the agent reaches a terminal state or reaches a time-bound, the environment resets to an

initial state. This type of episodic environment is widely used in reinforcement learning

problems and genetic computation to test the algorithms/agents. The episodic learning

environment allows visiting various parts of the state space in different episodes.

In general, an episodic learning environment is useful for testing single agent systems,

but for the multi-agent system many complications arise. A big complication is that an agent

not only needs to take environment states into account to choose the best action but also

the states of other agents. In addition, the environment for a GEESE multi-agent system

is partially observable because the states of other agents are not observable in distributed

learning, which adds more complexity to the problem.

Because pure episodic learning is not compatible with fully distributed multi-agent

systems, the simulator in our framework is not based on an episodic variant. Thus, there is

no notion of terminal states and replay. Rather, the simulator runs for a particular number

of time steps, which are defined before the start of the simulation.

3.5.3 Behavior Sampling

After running a sufficient number of epochs, the swarm has a collection of agents, some of

which are fit and some of which may not be fit. Behavior sampling is the process of choosing

which evolved behaviors from the evolution process are used in a swarm when the swarm is

placed in a test environment.

Two different methods of behavior sampling were considered. Both approaches use

the fitness of agents as defined in Equation (3.1) below. First, in best agent sampling, only

the highest performing agent’s phenotype was picked from all the agents that took part in

the evolution; in best agent sampling, all the agents were homogeneous. Second, in top agents
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sampling, the agent phenotype was sorted based on the fitness values; then, a fixed number

of top agents phenotype were extracted. Results indicated that, because of homogeneity, best

agent sampling performed worse than top agents, so top agents results are presented.

3.6 Fitness

This section describes how the phenotypical behaviors evolved by GEESE are evaluated for

evolutionary fitness.

When two GEESE agents are in proximity to each other at the hub or near each

other elsewhere in the world, they pass their current genome to each other. Each GEESE

agent in the swarm collects genomes from every other agent with whom it interacts, and once

an agent has collected a sufficient number of genomes (see Table 3.2), the agent performs

genetic operations independently. A generation begins with an agent holding only a single

genome and ends when that agent has selected a new genome using genetic operations. Since

whether or not an agent has had enough encounters with others depends on the probability

that agents meet in the world, each agent can experience multiple generations within an

epoch or can experience few or no generations.

Parameters GEESE

Number of Genomes Required to Trigger Genetic Operations 70
Parent-Selection Fitness + truncation
Mutation Probability 0.01
Crossover variable onepoint
Crossover Probability 0.9
Genome-Selection Diversity
Maximum Codon Int 1000
Agent Size 100

Table 3.2: GEESE parameters used for the swarm experiments.

GEESE applies four genetic operators: parent-selection, cross-over, mutation, and

genome-selection. We discuss each of these operations below. Table 3.2 shows the parameters
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used in the different genetic operations and is included so that others can replicate the paper’s

results. Other parameters were chosen directly from [50].

3.6.1 Parent-Selection, Crossover, Mutation

The parent-selection operator returns the most fit individuals from the population, which

are termed “parents”. After parents are selected, the crossover operator is applied to the

parents to add children to the population; parents are discarded from the population after

crossover. The set of children is then mutated using a mutation operator. Following mutation,

a single genome is retained by the agent; the process for deciding which genome to retain is

described in the next subsection.

Parent Fitness

The credit assignment problem for swarm behavior design is a hard problem precisely because

(a) the collective behavior emerges from the collective actions of individual agents and

(b) the reward to an individual is determined by the reward to the group. This credit

assignment problem is exacerbated by different time scales used in the algorithm: the number

of epochs, the number of generations, how long tasks take to execute, and how long it takes

for information to flow between agents.

Preliminary experiments showed that task-specific fitness functions were not sufficient

to induce desirable learned behavior in reasonable time. This paper uses two forms of

“bootstrapping” to help boost learning. One form of bootstrapping, exploration, rewards

exploration to different spatial regions. The other form of bootstrapping, prospective fitness,

rewards agents for persisting in activities that may be useful.

Whether or not a genome is considered fit enough to be a parent is determined by

three elements: Task Fitness, Exploration Fitness, and Prospective Fitness. Let O, E, and P

denote task fitness, exploration fitness, and prospective fitness, respectively.
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Task fitness, O, is defined by a task-specific objective function. The next subsubsection

describes the three task-specific fitness functions used in this paper. Exploration fitness,

denoted by E, and prospective fitness, denoted by P , are described in the subsequent

subsubsections.

Let At denote the fitness of the agent At. The overall agent fitness of a genome to be

a parent at time step t is given by

At = β(At−1) + (Ot + Et + Pt). (3.1)

Recall that a generation begins when an agent has a single genome and ends when the agent

collects enough genomes from interactions with neighbors to produce a new genome through

genetic operations. Because task completion, epochs, and generations can operate on different

time scales, the fitness of an agent needs to have some memory to enable it to account for its

part in the credit assignment problem [1]. The t− 1 term in Equation (3.1) represents the

agent fitness in the previous generation and β is the generational discount factor.

Task-Specific Objectives

The task or goal that the user wants the swarms to accomplish needs to be specified. The goal

is defined in terms of a task-specific objective function. The objective function embodies the

intent of the user for the swarms to accomplish. The objective function guides the evolution

of individual agent behaviors.

The user can define an objective function for the experiments they want the swarms

to perform given that the function is (quickly) computable using the information available in

the environment. For the experiments reported in this document, three different task-specific

objective functions are defined: Foraging, Nest-Maintenance, and Cooperative Transport.

Denote these objective functions by F , N , and T , respectively; thus the objective function O

is selected by a human operator from the set O ∈ {F,N, T}.
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Multi- and Single-Source Foraging Denote foraging fitness by F where F : {Phenotypes} →

R. F represents the user’s goal for the swarms to collect the maximum amount of food

and the set {Phenotypes} represents all possible BT program phenotypes. More food is

preferred to less food. Since the food could be in any part of the environment, the agents

need to explore the environment, find the source of food, and transport food to the hub. Let

F (phenotypes) = |HF |, where HF is food “items” collected to hub. Foraging fitness is set

cardinality, i.e., total number of food items collected and transported from environment to

hub.

Cooperative Transport Denote cooperative transport fitness by T where T : {Phenotypes} →

R. T represents the user’s goal for the swarms to transport a heavy object from source location,

located anywhere in the environment, to destination. No agent is capable of moving the object

alone. The agents need to explore the environment, find the heavy object, and coordinate

with other agents to transport it to a desired destination. Let DO be the set which contains

all the objects collected and moved to a desired destination. Let T (phenotypes) = |DO|,

which is the number of heavy objects collected and moved to the desired destination.

Nest Maintenance Denote the nest maintenance function byM whereM : {Phenotypes} →

R. M represents the user’s goal for the swarms to clear the area around the hub from debris.

The debris objects are distributed around the periphery of the hub blocking the way for any

exploring agents who might wish to return to the hub. In nest maintenance, agents need to

explore near the hub, find the debris, and then move the debris to a place outside a boundary.

Let ND be the set which contains all the debris collected outside the boundary. Then

M(phenotype) = |ND| is the total number of debris objects moved outside the boundary.

Exploration Fitness

Exploration fitness is a form of bootstrapping that rewards those agents that explore the

world. Denote the exploration fitness function by E where E : {Locations} → R. At each
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time step, each agent stores the location it is in. If the current location has not previously

been visited by an agent, then the agent appends the current location into its memory.

Exploration fitness is the total numbers of locations the agent has visited. The exploration

function is computed exactly the same way for all the task that involves spatial information.

Prospective Objective

Prospective fitness is a form of bootstrapping that rewards agents that persist in tasks that

have a “prospect” of contributing to the collective good. Denote the prospective fitness

by P. In each task in this paper, moving stuff (food, debris, objects of interest) contribute to

collective good. Thus P is set to the number of items that an agent is carrying.

Necessity of Task, Exploration, Prospective

The grammar allows BT to create three different control-flow nodes and sixteen types of

execution nodes, organized recursively. If the width is a behavior tree is N , then there

are 3 ∗ 16!
N !×(16−N)!

ways to build the behavior tree. Thus the search space is a combinatoric

problem where there are myriad ways to construct the BT.

Because of the size of the possible BT programs and the difficulty of the credit

assignment problem, preliminary experiments showed that each fitness element (task-specific,

exploration, prospective) was necessary to produce good swarm behaviors. Moreover, the

diversity function described in the next section was also necessary to produce acceptable

behaviors across the different task types.

3.6.2 Genome Selection

When agents have enough genomes, the fitness of each genome is computed using the task,

exploration, and prospective fitnesses described above. The most fit 50% of the agent’s

genomes are then selected to be parents. Crossover is performed to create a new population

of genomes, after which the parents are discarded. Mutation is then applied to enlarge the
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population. And then a single genome is selected based on diversity and the agent follows

the corresponding BT program phenotype.

Note that it is impossible for the agent to know for sure which of its genomes are the

most fit. The only way to test a genome is to use the corresponding BT program phenotype

and move around in the environment, but it is not possible to do this in any kind of efficient

way because of the credit assignment problem. Nevertheless, a single genome must be selected

so that the agent can act. This paper uses a heuristic measure of diversity to select a genome.

Promoting diversity among agents in a collective serves two purposes. First, promoting

diversity allows a more thorough exploration of the set of possible solutions. Second, promoting

diversity contributes to the resilience of the swarm as a whole; such diversity has been identified

as key for tuning the number of agents committed to specific tasks in biological colonies [25, 61].

The primary purpose of promoting diversity in this paper is to contribute to what is called

the diversity of “types and kinds” [54], enabling swarm resilience and efficient collective

behavior, with greater exploration a side-benefit.

The diversity of a population of agents is computed at their phenotype level since it is

the phenotype/program that actually interacts with the environment. As the evolutionary

algorithm is trying to combine different type of behaviors within a BT, the diversity function

ensures the agents with unique BT program phenotypes have higher chances of survival.

Denote the diversity heuristic by D where D : {Phenotypes} → R. The diversity

function takes a BT as input and extracts all the nodes from the tree. Recall that for the

BNF grammar used in this report, the nodes can have only (a) “Sequence” and “Selector”

controls and (b) primitive agent behaviors. The extracted nodes from the tree are stored in a

dictionary structure as control nodes and behavior nodes; the number of such nodes is also

stored. The diversity fitness is then the total number of unique behavior nodes divided by

the total behaviors defined in the swarm grammar.
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3.7 Experiments and Results

This section describes the evolved collective behaviors for different swarm tasks and presents

quantitative results for the four tasks described in the introduction.

Because of the stochastic nature of genetic evolution, the set of swarm behaviors can

consist of different BT program phenotypes for each experimental run. The evolved behaviors

that successfully perform the task are transferred to the test environment. Debris, sites, and

objects are randomly placed in the world. Because the agent phenotypes are affected to the

randomness in mutation and because of the randomness in the world, the evolved behaviors

are evaluated for fifty separate runs.

For each swarm task, average results are shown in a graph with a solid green line

surrounded by a red region that represents ± one standard deviation. All the values in the

y-axis are scaled using natural logarithm. A box-plot is superimposed at regular time intervals

with the box indicating IQR (Q3-Q1), the whiskers with Q3 + 1.5*IQR upper bound and Q1

- 1.5*IQR lower bound, and outliers as rhombi. The leftmost portion shows a section of one

of the learned behavior tree and the rightmost portion shows a section of the hand-coded

behavior tree for the particular task.

3.7.1 Foraging

In the single-source foraging problem, the swarm’s task is to collect food from a source region

in the environment and bring the food to the hub [68]. A source can be located anywhere

within a pre-defined bounded area except for within a fixed distance from the hub and has a

fixed number of food units available. A single agent can take only one food unit per visit.

Agents carry the food units from source to hub, where the food is stored. Agents do not

have prior information regarding the source location. Agents can make several trips between

source and hub.

When there are multiple sources of food in the environment, the foraging problem is

called multi-source foraging. The multiple sources can have different sizes and quantities of
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Figure 3.1: Empirical results on single source foraging problem.

food. In multi-source foraging, agents in the swarm need to exploit the multiple food source

locations to maximize the food collected at the hub.

To show that the evolved behaviors are robust across environments, we apply behaviors

evolved on the single-source foraging problem to the multi-source foraging problem. In each

foraging problem, the objective for the swarm is the same: to collect the maximum amount

of food in the hub. The only difference between the foraging problems is the number of the

sources and where they are at in the world. When behaviors evolved in one environment

performing well in another, qualitatively different environment implies robustness.

Single-Source Foraging

Figure 3.1 shows the average performance of swarm for Single-Source Foraging. The left

portion shows the learned behaviors and the right portion shows the results for a hand-coded

BT solution. The evolved behaviors clearly perform better than the hand-coded behaviors.

It takes about 3000 iterations before agents start gathering food in the hub. The

reason behind the slow start is that the agents need to explore the environment first to find

the location of the source. Since there is just a single source it takes agents some time to

find the source and communicate the information of the source. In contrast, the hand-coded

behavior was able to collect food right before 500 iterations. After analyzing the BT for both
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behaviors in figure 3.1, we observe that the exploration node is independent of other nodes in

hand-coded BT whereas in evolved BT, the explore node is dependent on another composite

node. The independence of explore node from other nodes allows the hand-coded BT to

explore the environment much faster than the evolved BT.

Subjective observations, to be quantified in future work, indicate that the diversity

of agents in the evolved agents is one reason for their success; all the agents have the same

behavior for the hand-coded solution. Another reason for the inferior performance of hand-

coded behavior is that it is hard for humans to construct a BT tree with a cyclic nature as

BT are directed trees. For foraging, there is cyclic pattern of visiting hub and other objects

of interest.

Multi-Source Foraging

Figure 3.2 shows how well behaviors evolved for single-source foraging work on the multi-

source foraging problem. Two observations are apparent. First, since there are multiple

sources, the time to discover one of the sources is significantly lower than in single source

problem. Second, even though the problem is different, the single-source learners can succeed

on the multi-source problem, though one would anticipate higher performance if the agents

could specialize in the multi-source foraging task. A slightly lower performance of the evolved

behavior in the multi-source foraging problem is due to the variability in size of the food

source in the environment.

3.7.2 Cooperative Transport

Cooperative transport arises when a group of agent works together to carry a large object and

form a consensus on a travel direction [39]. Since a single agent doesn’t have the resources

to carry the large object, it needs to cooperate with others to move the object from a start

location to a goal location. Without loss of generality, the object is treated as food and the
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Figure 3.2: Empirical results on multiple source foraging problem. The behaviors evolved for
single-source foraging problem was used to run this experiment.

goal location is the hub. Results are shown for a world in which each agent can carry 10 food

units, but when each food object weighs more than 10 units.

Figure 3.3 show the performance of the evolved behaviors for cooperative transport.

The figure has box-and-whiskers elements, but the quartiles and 90% variation bound all lie

on the same line. Only outliers appear. Almost every experiment succeed but one experiment

run failed. Thus, all outliers yield a score of zero.

Figure 3.3: Empirical results on cooperative transport problem.
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Comparing evolved behaviors (left) with hand-coded behaviors (right) in Figure 3.3.

As with single-source foraging, subjective observations indicate that the homogeneous nature

of the hand-coded population interfered with the swarm’s ability to succeed.

3.7.3 Nest Maintenance

The nest maintenance task is to remove debris near the hub, which is a well-known behavior

for ant colonies [23]. The debris was distributed around the hub and the agent task is to

move the debris away from the hub.

Figure 3.4 shows the performance of the evolved behaviors in the nest-maintenance

task. With just 1000 iterations, the swarm was successful in removing all the debris from the

hub. Towards the final iterations, almost all the experiment run converges to the solution.

Figure 3.4: Empirical results on nest maintenance task.

Comparing behaviors for the evolved (left) to the right (hand-coded) behaviors in

Figure 3.4 again shows that the evolved behaviors performed better than the hand-coded

behaviors. One of the causes of the bad performance of hand-coded behavior is, again, due

to homogeneous agents.
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3.8 Future Work

The framework was able to evolve behaviors for different task and perform well in the

simulation but should be applied to physical robots. Future work should also explore how

the grammar can be modified to evolve other swarm tasks. Additionally, future work should

explore probabilistic modeling of agent’s sensing and acting capabilities. The framework has

been tested only on spatial colony tasks, and it would be interesting to test the framework

for classification, regression and NLP related problems. Finally, the effect of behavioral

diversity and the diversity heuristic on the quality and resilience of swarm behavior needs to

be studied, using, for example Page’s taxonomy of diversity [54].

3.9 Conclusions

Results show that a recursively defined BT-based grammar, built from common agent

behaviors, can be used by the GEESE algorithm to evolve solutions to multiple swarm tasks.

Because of the difficulty of solving the credit assignment problem, bootstrapping methods

must be added to the fitness function to find solutions in reasonable time. When agents

evolved for single-source foraging were put into a world with multiple sources (of different

sizes and locations), the agents were still able to succeed, indicating a type of robustness.

Two things indicate that the diversity of the evolved behaviors was essential to their

success. First, evolved behaviors outperformed homogeneous hand-coded behaviors. Second,

when a swarm was constructed by using a collection of the top-performing type of evolved

agent, the swarm fails to succeed in most of the tasks. However, when a diverse set of evolved

agents are used in the tests, the swarm succeeds in the task. The evolved BT are readable

such that looking at BT graph provides us the information about agent decisions.
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Chapter 4

Summary and Future Work

4.1 Summary

In this thesis, we developed a framework that embodied Agent-Based Modeling (ABM),

Grammatical Evolution algorithm for Evolution of Swarm bEhaviors (GEESE), and Behavior

Trees (BTs). The effectiveness of GEESE was first demonstrated on the Santa Fe Trail

problem, outperforming the state of the art in terms of minimum steps to solve the problem.

Additionally, GEESE was used to evolve individual behaviors that lead to successful colony-

level foraging, outperforming behaviors evolved by conventional grammatical evolution as

well as hand-coded individual behaviors.

The thesis provided evidence in support of the following claims: 1) GEESE produces

high-quality collective behaviors more effectively than centralized GEs, at least for some

problems; 2) behaviors learned via GEESE can be reused across a set of similar problems (a

type of robustness); and 3) the same grammar can be tuned for dissimilar collective behavior

(a breadth claim).

Results show that a recursively defined BT-based grammar, built from common agent

behaviors, can be used by the GEESE algorithm to evolve solutions to multiple swarm tasks.

Because of the difficulty of solving the credit-assignment problem, bootstrapping methods

were added to the fitness function to find solutions in reasonable time. When agents evolved

for single-source foraging were put into a world with multiple sources (of different sizes and

locations), the agents were still able to succeed, indicating a type of robustness.
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Two things indicate that the diversity of the evolved behaviors was essential to their

success. First, evolved behaviors outperformed homogeneous hand-coded behaviors. Second,

when a swarm was constructed by using a collection of the top-performing type of evolved

agent, the swarm fails to succeed in most of the tasks. However, when a diverse set of evolved

agents are used in the tests, the swarm succeeds in the task. The evolved BTs were readable,

meaning that looking at a BT graph provided information about agent decisions.

This work has three main contributions, namely: a general purpose swarm framework

with GE and BT capabilities; a carefully designed BNF grammar, which can be used to

evolve a diverse set of behaviors; and a set of bootstrapped fitness functions inspired by the

concepts of diversity. Results provide evidence in support of the claim that the framework

successfully addressed the research questions presented in Section 1.2.

4.2 Future Work

The GEESE algorithm was able to evolve behaviors for different multi-agent tasks that

performed well in simulations, but the algorithm should be applied to physical robots.

Physical robots present important problems that are difficult to simulate, like collisions,

sensors failures, and actuator failures. This future work should explore the probabilistic

modeling of agent’s sensing and acting capabilities. Moreover, future work show explore the

properties of interference with respect to agent size, obstacle density, and communication

failures.

Future work should also explore how the grammar can be modified to evolve other

swarm tasks. For example, insect colonies are known to perform construction tasks, to

perform defense-related activities, to farm and hunt, and to raid other colonies. Other animal

behaviors might also be amenable to grammatical evolution, like pack hunting, joining or

leaving a herd, and migration.
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The framework has been tested only on spatial colony tasks, and it would be interesting

to test the framework for decision-making tasks such as classification, regression, more general

consensus decision-making, and possibly even NLP-related problems.

Finally, the effect of behavioral diversity and the diversity heuristic on the quality and

resilience of swarm behavior needs to be studied, using, for example, Page’s taxonomy of

diversity [54].

53



Appendix A

Swarm Framework

The swarm framework enables three capabilities. First, the framework allows a user to

quickly create, evolve, and test swarm-based behaviors using built-in core components (spatial

grids, agent scheduler, evolution algorithms, and BTs) or customized implementation. Second,

the framework allows behaviors to be visualized using a browser-based interface. Third, the

framework provides data analysis tools that allow collective behaviors to be analyzed.

Figure A.1: Control flow diagram of the framework. This figure describes a simplified version of
the control flow between different modules in the framework.

Figure A.1 shows the control flow between the different modules in the framework.

The length of each experiment run, denoted as an epoch, is defined as the number of calls of
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the step function of the model module. The scheduler step function is called for each step

function call of the model module. The scheduler modules determine how to activate all the

agents in the environment. The scheduler activates the step function of the agent module,

which in-turn activates the BT program of each agent.

Figure A.2: Five major components of an agent in swarm framework. Genotype is the array of
numbers. A function maps the genotype to phenotype and then the phenotype is mapped to a
behavior tree.

The valid programs in this framework are also valid XML documents. Encoding

phenotypes as XML documents has two purposes: first, it is human readable, and second, it

can be easily parsed into a tree structure. The phenotype then can be used by a Phenotype to

Behavior Tree mapping process to create an executable Behavior Tree. The mapping process

between Phenotype and Behavior Tree involves a recursive function to convert all the XML

tags and their associated attributes into the control flow nodes and execution nodes. The

conversion process should convert the XML document (phenotype) into a valid Behavior Tree

instance. Then the BT instance can be executed by passing ticks through the directed tree.

The XML tags in the BNF grammar are not shown to make it readable. For the grammar

with XML tags, please refer to the project source1.

Figure A.3 describes the agent initialization process in the framework and Figure A.4

describes the schematic diagram of the framework. The initialization block on the top-left of

Figure A.4 represents the process from Figure A.3.

1https://github.com/aadeshnpn/swarm/blob/master/grammars/bt.bnf
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Figure A.3: Initialization process overview in the swarm framework.

56



Figure A.4: Schematic diagram of the framework.
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Appendix B

Hand-Coded Behavior Trees

Figure B.1: Hand-coded Behavior Tree for single-source foraging task.
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Figure B.2: Hand-coded Behavior Tree for cooperative transport task.

Figure B.3: Hand-coded Behavior Tree for nest maintenance task.
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Acronyms

ABM Agent-Based Modeling. 51

BNF Backus–Naur Form. ii, 3, 52

BT Behavior Tree. ii, 2, 3, 52

dEE distributed Embodied Evolution. 2

GE Grammatical Evolution. ii, 3, 51, 52

GEESE Grammatical Evolution algorithm for Evolution of Swarm bEhaviors. ii, 2–4, 51
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