
Cooperative Transport in Mobile Robots

Aadesh Neupane1

Abstract— Social animals cooperatively transport object
which is many times bigger than themselves effectively. Mimick-
ing those behaviors on real robots will have diverse applications
in engineering, health care and search and rescue. In this
paper, we define different categories of cooperative transport
problems and discuss different tools and techniques to tackle
them. We then show that occlusion-based cooperative transport
techniques are effective when the object is convex and there are
enough agents to overcome frictional force. Results show that
even with only two robots, the occlusion-based technique is able
to transport objects 60% of the time.

I. INTRODUCTION

We see examples of simple solutions to complex problems
in Nature. Simple organisms like bacteria without any central
control or organizational hierarchy have evolved quite well
to solve problems, survive and reproduce. Ants also have
evolved collective behaviors for different tasks like foraging,
nest defense, path planning and construction. These large
group of insects like bees, ants and others are known as
Swarms. Among different tasks these swarms can do, we
focus on “Cooperative transport”, a classical problem studied
in robotics. “Cooperative transport” arises when a group of
agent works together to carry a large object and form a
consensus on a travel direction. Since a single agent doesn’t
have the resources to carry the large object, it needs to
cooperative with its group to carry or move that object from
a start location to a goal location. Performing “cooperative
transport” with robots with the efficiency and robustness as
of ants has wide applications in disaster relief, construction
and search and rescue.

In nature, ants and termites have a robust solution to this
problem of cooperative transport. Ants use a recruitment
based strategy to gather a large number of ants to the
location of interest. Then, without centralized control, they
form a consensus on a common direction to move the object
of interest. They do it without any knowledge of object
shape or mass and are able to transport complex irregularly
shaped objects. This allows the ants to collectively achieve
tasks that individuals cannot achieve with added benefits of
faster transport speeds and robustness to individual failure.
Mimicking these behaviors would allow simple robots to
transport heavy objects efficiently. Researchers have tried
different strategies to mimic these behaviors onto robots.
Robots have different kinematics based on their structure.
So different type of robots will apply different techniques
to solve the cooperative transport problem. Moreover, each

1Aadesh Neupane is graduate student, Brigham Young University
aadeshnpn@byu.edu

solution or technique will be applicable to a particular type
of robot with their own set of constraints.

In this paper, we explore different strategies employed to
solve the cooperative transport problem and at the end de-
scribe an experiment with Cozmo robots based on occlusion-
based cooperative transport [1].

II. OVERVIEW

The cooperative transport problem has been extensively
studied in the context of multi-robot cooperation. Based on
the literature, we can categorize the most common techniques
as; 1) pulling, 2) pushing, and 3) caging.

a) Pulling: In nature, most of the cooperative transport
is done by pulling. Pulling techniques involves connecting
robots to the object using robotic manipulators for grasping
or lifting. For pulling, robots need to know the shape and
size of the object in prior to figure out the attach point on
the object. Since, in many cases, objects attributes are not
known a prior, pulling strategies are hard to carry out in
practice.

Moreover, robotic manipulators add complexity to the
existing base dynamics of the mobile robots which makes
it hard to design a robust controller. Also, these robots are
mostly non-holonomic i.e. the controllable degree of freedom
is less than the total degree of freedom. For example, a robot
car has 3 degrees of freedom i.e its position in x and y and its
orientation. However, there are only two controllable degrees
of freedom which are acceleration and turning angle of the
steering wheel. Thus there are lots of constraints to design
controllers for non-holonomic systems.

Thus the complexity of modeling physical mechanisms
makes pulling strategy difficult to realize in practical robots.

b) Pushing: Pushing techniques are relatively simple
as they only need to push the object of interest with a force
greater than downward gravitation force and frictional force.
When the collective force of the robots is greater than the
opposing force on the object, the object starts to move. The
direction and speed of the object depend on the resultant
force acting on the large object. Since the pushing forces are
distributed over multiple contact points on the object, the
direction of movement is stable and increasing the number
of the agents will increase the speed of the moving object.

In many cases, pushing might be a good technique for
cooperative transport but there is the risk of wear and tear
on the object being transported. Since the object is being
pushed in excess of frictional force, there is the danger of
object deformation. Thus this technique is not applicable for
transporting fragile objects.



c) Caging: Caging techniques are similar to the forma-
tion control problem. In formation control, robots organize
themselves into a formation and maintains it during motion.
For caging, robots organize themselves into a formation
around the object of interest so that the object is trapped
inside the formation. As long as the formation is maintained,
the motion in robots will also induce motion in the trapped
object. Caging can be applied to both pushing and pulling
techniques.

Formulating the caging problem as formation control
problem makes it easier in some cases but complexity
arises when the object to be caged is of irregular shape.
In addition, different caging techniques require a varying
number of robots and additional information about object
features. Thus, in practice, it is difficult to design caging
techniques to accommodate both the numbers of robots and
the objects features.

III. MODELING

For modeling the cooperative transport problem, we first
need to build a model for our robots. If we consider ho-
mogeneous robots, the same model will work for all robots
but when we consider M heterogeneous robots, we need
upto M different models for the robots. Once we have our
robot models, we need to choose among the three techniques
described in section II. For this project, we will focus on
pushing techniques as it is easy to analyze and implement
on actual robots. Finally, we need a way to incorporate the
communication between the robots. Mostly, researchers use
graph theoretic methods to model the robots communication.
Based on the communication behavior (implicit or explicit)
the system analysis will differ.

In the section below, we look at two models based one
based on implicit communication III-A and the other based
on explicit communication III-B. The models for the agent
will be introduced in the Section V-A.1 and V-B.1. Also,
most of the multi-agent problems can be build on top of
the agreement problem. The agreement problem in multi-
agent systems relates to agreeing a global values for the state
variables. So, in this section we will show examples related to
the agreement problem and build up a model for cooperative
transport in later section.

A. Explicit communication

For a general multi-agent system, Let N be the number
of agents with its own dynamics and can communicate with
other agents. Let equation 1 represent the dynamics of the
agents where i ∈ 1,2,3 · · ·N

ẋi = Axi +Bui

yi =Cxi +Dui
(1)

Now based on the communication structure, the dynamics
of overall system evolve differently and can be represented
by Linear Fraction Transformation (LFT).

Lets consider an example for agreement protocol. Lets
these N agents be interconnected via relative information-
exchange links. The rate of change of each unit’s state is

assumed to be governed by the sum of its relative states with
respect to a subset of other neighboring agents. To visualize
this lets consider four agents as show in Figure 1. Also the
first order dynamics for each agent is outlined in equation
3.

Fig. 1. Agreement protocol among four agents

ẋ1 = (x2− x1)+(x3− x1)+(x4− x1)

ẋ2 = (x1− x2)+(x3− x2)+(x4− x2)

ẋ3 = (x2− x3)+(x1− x3)+(x4− x3)

ẋ4 = (x2− x4)+(x3− x4)+(x1− x4).

(2)

The equation 3 can be reduced to the general form

ẋi(t) = ∑
j∈N(i)

(x j(t)− xi(t)), i = 1,2...N. (3)

Now the above system can be represented as follows:

ẋ(t) =−L(G)x(t), (4)

where L(G) is the laplacian of the agents’ interaction
network G and x(t) = (x1(t), ...,xN(t))T ∈ RN

For a fully connected multi-agent system, the L(G) is a
positive semidefinite matrix. In cases where the connection
is sparse or not fully connected, we can find the laplacian
matrix as

L(G) = ∆(G)−A(G), (5)

where ∆(G) is the degree matrix and A(G) is the adjacency
matrix.

Based on the connectivity of the graph : directed vs
undirected, balanced vs unbalanced, and strongly vs weakly
connected, there are different ways to design the controller
using graph decomposition and factorization tools.

For mobile robots, the graph is dynamic as the neighbored
of an agent changes with time. Its harder to model a large
number of robots using this approach. So, this approach
will be useful for a few agents using the pulling strategy
in cooperative transport. These agents need to be able to
communicate both the mount location and their respective
direction.



B. Implicit communication
Its more intuitive to employ implicit communication for

the cooperative transport problem. When human or ants
cooperate to carry a heavy load, they sense the resultant
force and direction on the object and act accordingly. In
this case, agents doesn’t maintain direct communication with
each other. Rather, they sense the activity of other agents
through the medium at hand (the transport object).

IV. CENTRALIZED/ DECENTRALIZED

We can design both centralized and decentralized con-
trollers to achieve cooperative transport. For centralized
control, we have to gather the states from all the robots
onto a single machine and make error adjustments and
send appropriate input signals to all the robots. In the
practical application for swarms and multi-agent system,
using centralized control brings in many limitations. Most
of the limitations induced in centralized control are due to
communication issues like bandwidth, range, and latency.
Also, accurate positioning and tracking systems are required
to keep track of each states variables of the robots. Due to
these limitations, it’s better to have a decentralized controller.
In case of decentralized control, each robot has its own
controller to drive its states towards stability along with
occasional control signals from other robots. In this paper,
we focus on decentralized control as it is easier to implement
on real robots.

V. EXPERIMENTS

We compare and contrast two experiments on cooperative
transport [1], [2] from the literature. Each uses implicit
communication to transport an object to the goal location.
Then we implement the methods described in the Chen et.
al. [1] using Cozmo robots.

A. Simple Swarm
In this section, we describe the mathematical model and

experiments from Michael et. al [2]. We then conclude with
the limitations of this research and why we choose not to
implement this model.

Michael et. al research is based on the specific version
of cooperative transport known as distributed planar ma-
nipulation, where robots transport a lightweight object of
known shape along a pre-specified global trajectory with
control of both object orientation and total force. Since the
global trajectory and shape is known, it is easy to analyze the
solution. The problem with this approach is that it requires
robots to track and estimate both the objects and the other
robots. This limits its applicability and scalability. Instead of
robots knowing global information, robots can sense locally
and act locally which makes the controller very simple and
overall system robust to noise.

Cooperative transport generally includes two steps: 1)
agents randomly search the environment for the object to
be transported and move towards the object to be in close
proximity and 2) agents apply force to the object to transport
it to the goal. Michael et. al consider to model only the
second part of the step.

1) Model: The object of interest is modeled as an arbitrary
connected 2D shape, with N agents applying force to it at
arbitrary points. The object has mass Mo, and can slide with
coefficients of static and kinetic friction µs,µk respectively.
The system is assumed to be quasi-static which implies
that the friction forces dominate inertial forces. Thus we
treat the system as a first order system neglecting inertial
terms. Assume that each agent ai applies a force ~fi to the
object in any direction, independent of how or where it is
attached. This assumption doesn’t hold for most of the robots
as they have non-holonomic movement. The research uses
omni-directional grippers to hold the assumption of the force
vector. Let Vmax be the agent’s maximum speed, f0 be the
magnitude of the maximum force the agent can apply and
C = f0/Vmax is a constant value for the agent. Then, the force
applied by each agent ~fi is dependent on the agent’s velocity
~vi as follows

~fi =C(Vmax−~vi · d̂)d̂, (6)

where d̂ is a unit vector in the direction the agent is
applying force. Intuitively, Equation 6 means that when the
agent is moving with maximum velocity it can’t apply any
force i.e ~vi = Vmax, implies ~fi = 0 and when the agent is
stationary it can apply maximum force. Using this model,
they show that when the resultant force from all the agents
~Ftot overcomes the ~Ff ric frictional forces, the agents will drive
the object to the goal location i.e the solution converges. Lets
expand the above model to understand the translation and
rotational effects on the object due to the resultant force.

a) Translation: From rigid body dynamics, the force
acting on the surface is the same as the force acting on the
center of the mass. The agent forces in the direction of the
goal are opposed by friction ~Ff ric, so the total force on the
object is given by

~Ftot =
N

∑
i=1

~fi−~Ff ric. (7)

If the object is not rotating then its velocity is the same
at all points i.e ~vi =~vob j where ~vob j is the center of mass
velocity of the object. Then the total force from all agents
can be written as

N

∑
i=1

~fi = NC(Vmax−~vob j.d̂)d̂. (8)

Since the direction of ~vob j and d̂ is same, their dot product
gives the norm which can be represented as ‖~vob j‖. Then we
can write Equation 8 as

N

∑
i=1

~fi = NC(Vmax−‖~vob j‖)d̂. (9)

The condition for the robots to overcome static friction and
move an object initially at rest is

NC(Vmax > µMog. (10)

The steady-state velocity ~vss for a moving object is that
at which the kinetic friction ~f f ric = −µkMogd̂ balances the



forces exerted by the agents. Then,

‖~vob j = ‖~vss‖=
(

Vmax−
µkMog

NC

)
. (11)

Thus the steady-state speed ‖~vss‖ at which N agents can
transport an object approaches the maximum speed of Vmax
asymptotically as N increases.

b) Rotation: The derivation of the translation compo-
nent in the above section assumes that object translation is
much faster than rotation. The negligible affect of rotation
can be justified by showing that for any initial configurations,
the object maximum rotation is 180o in a particular direction.
This result can be obtained using the quasi-static assumption.
It can be shown that there exits a stable equilibrium within
a rotation of no more that 180o.

The main contribution of Michael et. al is to develop
a simple swarm model with scalability properties. They
show the model is stable and show that this strategy is
agnostic to the object shape, location of object center-of-
mass, attachment location of the agents, and number of
agents using the Kilobot robot platform. The limitation of
this work is the assumption that robots can apply force in any
direction no matter the point of attachment. Thus, the object
of interest needs to be fitted with omni-direction grippers.
Attaching these special grippers on the object a prior is not
always possible thus this technique is very limited to certain
robots with homolomic moment.

B. Occlusion Based swarm

In this section, we describe the mathematical model and
experiments from Chen et. al [1] and discuss our implemen-
tation details with Cozmo robot.

The main strategy behind this research is to push the object
positioned so the agents line of sight to the goal is occluded
by the object. There are two main phases for this strategy:
1) agents observing the goal and object location and move
to the position behind the object where the goal location is
occuled, and 2) push the object towards the normal vector
of the center-of-mass of the object. The overall strategy is
represented by a state machine with five states where each
state has a different controller.

1) Model: This occlusion based strategy only works for
object larger than the agents with arbitray convex objects.

Let c ∈ R2 be the center of mass of the a rigid convex
object and let g = [0,0]T be the goal location. Let the
perimeter of the object be described by a closed, convex,
and differentiable curve given by

p(θ) =
[

r(θ)cosθ

r(θ)sinθ

]
+ c (12)

with θ ∈ [0,2π] and r : [0,2π] → R is differentiable and
satisfies r(2π) = r(0). By specifying r(θ), any convex shape
can be approximated by p and initially, g is outside of p.
The inward pointing normal vector on p(θ), named N(θ), is
the derivative of p(θ) rotated by π

2 .

N(θ) =

[
0 −1
1 0

]
p′(θ) (13)

Fig. 2. Modeling the occlusion problem

Points along p where the direct line of sight to g are
occluded between the two tangent points of p from g. We
write the two tangent points as p(α) and p(β ),for α,β ∈
[0,2π]. As tangent points, they satisfy

p(α).N(α) = p(β ).N(β ) = 0
p(θ).N(θ)> 0,∀θ ∈ (α,β ).

(14)

Since p is convex and g is outside p, α and β are well
defined. Let a = p(α) and b = p(β ), They satisfy

axcy−aycx > 0
bxcy−bycx < 0

,

(15)

where x and y denote the x and y coordinates. All of the
terms defined so far are represented in the Figure 2. From
the figure, all points p(θ) with θ ∈ (α,β ) are on the occluded
perimeter of the object, while all other points on p are visible
from g. Following are the lemmas described in the original
work. For proofs see [1].

lemma 1: Assume that n→ ∞ robots are uniformly dis-
tributed along the occluded perimeter of the object and they
are the only robots asserting a force on the object. The
direction of the resultation force asserted on the object by the
robots is equal to the direction of the vector (b−a) rotated
by π

2 and its magnitude is proportional to ‖b−a‖. i.e

F =

[
0 −1
1 0

]
(b−a) (16)

lemma 2: If the combined force contributed by the robots
F is considered as a single force, while Q is the torque
induced by F, the mid point of segement ab is an affecting
point of F.

As the object moves, a and b change over time. Assuming
that the robots react to changes to fill the occluded space
uniformly while pushing the object then Equation 16 is valid
as long as g is outside p. i.e

F(t) =
[

0 −1
1 0

]
(b(t)−a(t)). (17)



Then the translation dynamics of the center of mass of the
object are

v = ċ, v̇ =
F
M
, (18)

where v̇, ċ are the derivatives of v and c repsectively with
time t, and M is the object’s mass. Based on quasi-static
assumption if the motion of rigid object is slow, then the
translation dynamic becomes

ċ = kF, (19)

where k ∈R+ is a positive constatnt that transfers F propor-
tionally to the velocity of the object.

Now, we will show that based on the lemmas and dynam-
ics of the system, the system converges i.e the object will
arrive at the goal location as t→ ∞.

Theorem 1: When the dynamics is governed by Equation
19, then when t→ ∞, g will be on the object perimeter p.

Proof: Let l(t) = c(t).c(t) be the squared distance of
the center of mass c to goal g, then its derivative with regard
to time is

l̇ = 2kc ·F. (20)

Then using the value of F from Equation 17, we get

c ·F = (bxcy−bycx)− (axcy−aycx). (21)

According to Equation 16, c · F < 0. Hence, l̇(t) is strictly
decreasing. Since l(t)≥ 0∀t > 0 (as long as g is outside p),
we get limt→∞ = L ∈ R. Therefore,

lim
t→∞

c ·F = lim
t→∞

(bxcy−bycx)− (axcy−aycx). (22)

Comparing with Equation 15 this implies that,

lim
t→∞

(bxcy−bycx) = 0

lim
t→∞

(aycx−axcy) = 0.
(23)

In other words, the areas of traingles gca and gcb approach
zero as t→ ∞. Since c is always inside p, the traingles gca
and gcb can never have 0 area unless a= g and b= g. Hence,
as t → ∞, g will be on p. Thus, the object will ultimately
coincide with the goal and stop moving.

C. Cozmo

1) Differential drive dynamic: We verified the stability of
the occlusion based cooperative transport. We implemented
the dynamics using a differential drive robot. We choose
Cozmo robots 4 for implementation. We first describe the
kinematics of the differential drive robots and then describe
the state machine based controller that performs cooperative
transport. The state machine based controller is decentral-
ized. Figure 3 shows a simple model for a differential drive
robot where vl and vr is the velocity of left and right wheel
respectively, R is the radius of the wheel and L is the distance
between two wheels. The states of the differential drive
model are x and y which give the location of the robot and
φ which is the orientation of the robot. In order to drive the

Fig. 3. Differential drive robot model

Fig. 4. Cozmo robot

robot, we need to connect vl and vr to the states of the robots
which gives the kinematics equation for the robot [3].

ẋ =
R
2
(vr + vl)cosφ ,

ẏ =
R
2
(vr + vl)sinφ ,

φ̇ =
R
2
(vr + vl)

(24)

Its cumbersome to map the rate of change of wheel veloc-
ity to the location of the robot. Also building controllers to
adjust different wheel velocities to get desired location of the
object is hard in practice. So, we will use the unicycle model
for our robots. In this model, we will control translational v
and angular velocity w to drive the robots. Equation 25 gives
us the unicycle model.

ẋ = vcosφ ,

ẏ = vsinφ ,

φ̇ = w

(25)

Comparing equation 24 and 25, we get

v =
R
2
(vr + vl)⇒

2v
R

= vr + vl

w =
R
2
(vr− vl)⇒

wL
R

= vr− vl

(26)



and

vr =
2v+wL

2R

vl =
2v−wL

2R

(27)

While designing the controller 6 we will consider v and
w to be inputs and these inputs will be mapped to vr and vl
to drive the robot around.

2) State machine based controller: Cooperative transport
involves different phases. For each phase a different con-
troller is required. So, we utilize a state machine based
controller which will switch the controller based on the
different state value. Figure 5 show the different controllers
and the conditions under which they operate.

Fig. 5. Differential drive robot model

Our controller is the motion controller shown in Figure 6.
To accomplish the goal of driving the robot to a desired
linear velocity vd and angular velocity wd , our first step is to
compute the error between the true velocities and the desired
ones. So, let ev = v−vd and ew = w−wd be respectively the
linear and angular velocity errors. Then a simple proportional
control law is of the form

eam =−Kp1eV

ead =−Kp2ew
(28)

drives the errors to approximately zero. For stronger conver-
gence, a intergrator can be used along with the propotional
term as

eam =−Kp1ev−Ki1

∫ t

0
ev(τ)dτ

ead =−Kp2ew−Ki2

∫ t

0
ew(τ)dτ.

(29)

Suppose we want the robot to be in pr(t) =
(xr(t),yr(t),θr(t)) a desired reference position, at time t.
In order to drive the robot to the reference location, we
need to have desired linear and angular velocities (vd ,wd)
to force the position of the robot p = (x,y) to converge to
the reference position pr =(xr,yr). The error between current
position and reference position is

e = R(pr− p),

R =

[
cosθ −sinθ

sinθ cosθ

]
.

(30)

When the e goes to zero then p converges to pr. Then a
PI controller is given by[

vd
wd

]
=C

[
vr
wr

]
−
[

u1
u2

]
, (31)

where C = diag{cos(θr − θ),1}, u1 = −k1(xr − x), u2 =
k2vr sin(θr−θ)(yr−y)−k3(θr−θ) and each ki is a positive
gain constant. Equation 31 gives the control law to steer the
robot to goal location.

a) Search Object: For this controller, we don’t have
any reference point to go to or track. So we implement a
controller where the robot’s motion is random. This can be
achieved by sending random bounded values for vl and vr.
During this random movement, if the robot see the object,
then it will estimate the object’s pose. Pose estimation is
based on finding correspondences between points in the
real environment and their 2D image projection. As pose
estimation in wild is difficult problem to solve, it is common
to aid it with synthetic markers. Among those synthetic
markers, the use of binary square fiducial markers is quite
popular. Aruco tags are a class of square fiducial markers
composed by a wide black border and inner binary matrix
which determines its identifiers. The black border facilitates
its fast detection in the image and the binary codification
allows its identification and the application of error detection
and correction techniques.

A predefined size of those markers are pasted on the
object. Now the robot can estimate the object pose with
respect to itself. For each robot, the starting pose with always
at origin i.e (x,y,Φ) = (0,0,0). Thus, for each robot the
location of object and goal location varies based on their
initialization. The robot randomly searches the environment
until it registers both the goal and transport object in the
environment. To realize the occlusion in practice, the robot
must find a randevu point behind the object of interest. The
randevu point is computed based on the equation of straight
line.

b) Approach Object: After registering the location of
goal and transport object, the robots need to travel to a
randevu point. There could be obstacles while traveling,
so we implemented a obstacle avoidance controller. Since
there are no other sensors to know about surrounding, we
implemented obstacle avoidance controller using optical flow
using KLT tracker [4]. Then appropriate control signals vl
and vr is generated to drive the robot to the randevu point.
After that, the robots aligns it orientation to the object. A



Fig. 6. Control loop for the robots

simple PID controller then drives the robot towards the object
of interest.

c) Push Object: When the robot is in the close prox-
imity of the object it starts to move towards the direction
of goal. Since the object is heavy, there should be enough
agents to push the object to overcome frictional force. Until,
the goal is reached, the robots push the object. If N is large
then there is higher probability of robots collectively moving
the object to the goal location.

d) Check for Goal: Based on the pose estimation of
goal location from Search object step, the robots check if
they have reached the goal location. If not, they continue
pushing the object.

e) Move around object: During motion, if the robot
slips from the occluded region, it will readjust its position
to maintain itself in the occluded region.

3) Results: For the experiments, we used only 2 cozmo
robots [5]. Since only two robots were present, only 60%
successful cooperative transport were observed. Even though
the location obtained through pose estimation were noisy, the
controller was able to achieve cooperative transport with only
2 robots. Thus, the controller has properties of robustness.
The codes1 and the videos2 of the experiments has been
published online.

VI. CONCLUSIONS

This paper discussed the stability criteria of occlusion
based cooperative transport and occlusion based technique
was implemented on real robots. Results demonstrated that
only with 2 robots the technique performed well achieving
hitrate of 60%.

ACKNOWLEDGMENT

I would like to thank Dr. Warnick for approving this
project. Also, I would like to thank Charles Johnson for early
review of this paper.

1https://github.com/aadeshnpn/
cooperative-transport

2https://www.youtube.com/watch?v=WvW2b_O350E

REFERENCES

[1] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Transactions on Robotics, vol. 31, no. 2, pp. 307–321, 2015.

[2] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, and
R. Nagpal, “Collective transport of complex objects by simple robots:
theory and experiments,” in Proceedings of the 2013 international con-
ference on Autonomous agents and multi-agent systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2013, pp.
47–54.

[3] R. Carona, A. P. Aguiar, and J. Gaspar, “Control of unicycle type
robots tracking, path following and point stabilization,” 2008.

[4] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm,” Intel Corporation, vol. 5,
no. 1-10, p. 4, 2001.

[5] C. Anki. Cozmo robot. [Online]. Available: https://github.com/anki/
cozmo-python-sdk

https://github.com/aadeshnpn/cooperative-transport
https://github.com/aadeshnpn/cooperative-transport
https://www.youtube.com/watch?v=WvW2b_O350E
https://github.com/anki/cozmo-python-sdk
https://github.com/anki/cozmo-python-sdk

	INTRODUCTION
	Overview
	Modeling
	Explicit communication
	Implicit communication

	Centralized/ Decentralized
	Experiments
	Simple Swarm
	Model

	Occlusion Based swarm
	Model

	Cozmo
	Differential drive dynamic
	State machine based controller
	Results


	CONCLUSIONS
	References

