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Abstract

Reinforcement learning (RL) has recently shown great
promise in solving difficult learning task, and achieved
above human level performance in promising tasks like
Atari games (Mnih et al. 2013), Go (Silver et al. 2016)
and poker (Revell 2017). RL has two broad classes
of algorithms: Actor and Critic, with their own merits
and demerits. This paper explores the benefits of com-
bining them into Actor-Critic algorithms and demon-
strates their ability in solving classic control problems.
We use temporal difference learning class of algorithms
as critic and policy gradient as actor. Our implemen-
tation of Actor-Critic algorithms was able to solve the
classic Cartpole problem (Brockman et al. 2016) in 96
time steps. As these algorithms are model-free, it can be
use to solve almost any type of RL problems with very
few tweaks.

The intent of this project was to explore RL and apply actor-
critic based algorithms to solve classic control problems. RL
is inspired by behaviorist psychology and is concerned with
how agents ought to take actions in an environment so as
to maximize some notion of cumulative reward. The infor-
mation that the agent receives from the environment is not
guaranteed to be complete. But the agent takes action based
on the current state of the environment and receives feed-
back (rewards), which signifies the correctness of the agent’s
sequence of actions in the past. Thus, the objective of rein-
forcement learning is to find the best sequence of actions
which maximizes the long term reward.

RL is a bit different than standard supervised and unsuper-
vised machine learning approaches as it doesn’t have access
to correct input/output pair and correct actions are not la-
beled. Moreover, the environment is stochastic and the agent
has only partial or limited observability of the environment.
Thus, RL problems are recognized to be more difficult to
solve than other supervised learning problems.

Introduction
Most of the environment in RL is modeled as Markov De-
cision Process (MDP). MDP is extension of Markov chains,
which follows Markov property : if the conditional probabil-
ity distribution of future states of the process (conditional on
both past and present states) depends only upon the present
state, not on the sequence of events that preceded it. MDP

model time-discrete stochastic state-transition with five tu-
ples (S, P,A,R, π), S is a set of states, P is a set of possible
transition functions, A is a set of actions, R is a set of rewards
received while transition from one state to another and π is
a policy mapping which takes state and output action to take
in that state (Bellman 1957). An agent chooses an actions
at ∈ A which causes transition from state st to some suc-
cessor state st+1 with probability P (s, a, s′). Then the agent
receives reward r ∈ R for taking action at in state st.

The agent that interacts with the MDP is modeled in terms
of a policy π. A deterministic policy π : S → A is a map-
ping from the set of states to the set of actions. Applying π
means always selecting actions π(s) in state s. This is a spe-
cial case of a stochastic policy, which specifies a probability
distribution over A for each state s, where π(s, a) denotes
that probability to choose action a in state s.

The goal of RL is to find a policy that maximizes the ac-
cumulated sum of rewards. One approach to find the optimal
policy that maximizes the accumulated sum of rewards is by
solving MDP using Bellman equation. Below is a general
algorithm to calculate this optimal policy which are defined
recursively as follows:

π(s) := argmaxa{
∑
x

Pa(s, s′)(Ra(s, s′)+γU(s′))} (1)

U(s) :=
∑
s′

Pπ(s)(s, s
′)(Rπ(s)(s, s

′) + γU(s′)) (2)

In Bellman equation, the π function is not used; instead,
the value of π(s) is calcualted with U(s) whenever needed
(Heidrich-Meisner et al. 2007). Substituting the calculation
of π(s) into the calculation of U(s) gives us the bellman
equation.

U(s) := maxa{
∑
s′

Pa(s, s′)(Ra(s, s′) + γU(s′))} (3)

Since, we are interested in learning a policy that accu-
mulates as much reward as possible i.e. we are interested
in finding a policy π∗ that outperforms all other policies. It
has been shown that such an optimal policy always exists
although it need not be unique.

RL algorithms can be classified into critic-only, actor-only
and actor-critic methods where each class can be further di-
vided into model-based and model-free algorithms, depend-
ing on whether the algorithm needs or learns explicitly tran-
sition probabilities and expected reward for state-action pair.



Critic-only RL

This class of algorithms are based on the idea of first find-
ing the optimal value function and then deriving an opti-
mal policy from this value function (mapping from state to
expected reward). A simple approach to learn value func-
tion is through dynamic programming. For a finite space,
the Bellman equation yields a finite set of linear equations,
which can be solved using standard methods. We can modify
the Bellman equation to define a learning algorithm called
value iteration, which determines the optimal value func-
tion. Value iteration is a model based approach, as it makes
explicitly use of model of environment, which is given by
the transition probabilities P and the expected rewards R.
To overcome this disadvantage of value iteration, Temporal
Difference (TD) learning comes to the rescue. TD based al-
gorithms estimates the value function and derive an optimal
policy from a set of observable quantities: transition from
state s to state s′ with action a and immediate reward r that
was received (Sutton 1988). In TD learning approach, we
get the new estimate of the utility by summing up the old
estimate for that state with the estimation error. Equation 4
defines the update rule for TD algorithm.

U(st)← (U(st) + α[rt+1 + γU(st+1)− U(st)] (4)

But equation 4 doesn’t take past experience into considera-
tion. Although, TD based algorithms converge towards the
optimal value function, the rate of convergence is slow due
to the fact that only a single state-action pair is updated per
time step (Watkins and Dayan 1992) (Tesauro 1992). The
concept called eligibility trace is introduce to speed up learn-
ing which suggests to update value function not only for the
previous state but for the states which occurred earlier in the
trajectory (Singh and Sutton 1996) (Främling 2007). The
basic TD approach works based on the active scenario with
on-policy learning i.e we start to find the optimal policy by
using the equation 4 starting with a random policy. The Q-
learning algorithm is different than previous algorithms as
it uses off-policy learning. In off-policy learning the policy
π is updated based on the observation of a second policy µ
which is not updated. This strategy allows to learn by ob-
servation i.e learn about optimal policy while following an
exploratory policy. Equation 5 defines the update rule for Q-
learning.

Q(st, at)← Q(st, at)+α[rt+1+γmaxaQ(st+1, a)−Q(st, at)]
(5)

Most of the algorithms discussed above are for discrete
values sets and we assumed that the values can be stored
in a table. But in practical problems, state space would be-
come huge or infinite which would be impossible to store in
a table based representation. Hence, value function are rep-
resented by some function approximators like Neural Net-
works, Decision Tree, Nearest Neighbor, Linear Combina-
tion of features or grid-based function approximators which
can also generalize unseen states (Sutton 1996). Some of
the popular algorithms that fall into critic-only category are
Monte-Carlo methods, TD, Q-Learning, Sarsa and others.

Actor-only RL
This class of algorithms are based on the idea of directly
finding the optimal policy function without building value
function i.e. these algorithms search directly in policy space.
It usages parametrized policy to directly estimate the gradi-
ent of the return based on simulation with respect to the pa-
rameter of the actor, and updates these parameters in a direc-
tion of improvement without using value functions. Mostly
used actor-only reinforcement learning algorithm is policy
gradient (Sutton et al. 1999). A possible drawback of such
methods is that the gradient estimators may have a large vari-
ance. Furthermore, as the policy changes, a new gradient is
estimated independently of past estimates. Hence, there is no
learning in the sense of accumulation and consolidation of
older information. Some of the popular algorithms that fall
into actor-only category are REINFORCE (Williams 1992)
and Evolutionary optimization algorithms.

Actor-Critic RL
Actor-critic methods combine the advantages of actor-only
and critic-only methods. While the parameterized actor
brings the advantage of computing continuous actions with-
out the need for optimization procedures on a value func-
tion, the critics merit is that it supplies the actor with low-
variance knowledge of the performance. More specifically,
the critics estimate of the expected return allows for the ac-
tor to update with gradients that have lower variance, speed-
ing up the learning process. The lower variance is traded
for a larger bias at the start of learning when the critics es-
timates are far from accurate. Actor-critic methods usually
have good convergence properties, in contrast to critic-only
methods (Kimura and Kobayashi n.d.) (Sutton et al. 1999).

Figure 1: General actor-critic architecture

Problem
The task that we want to solve using our algorithm is known
as the CartPole problem. This control problem was de-
scribed (A. G. Barto, Sutton, and Anderson 1983) in details.
In simple terms, this problem can be described as ”A pole is
attached by an un-actuated joint to a cart, which moves along
a frictionless track. The system is controlled by applying a



force of +1 or -1 to the cart. The pendulum starts upright, and
the goal is to prevent it from falling over. A reward of +1 is
provided for every timestep that the pole remains upright.
The episode ends when the pole is more than 15 degrees
from vertical, or the cart moves more than 2.4 units from
the center. CartPole-v0 and CartPole-v1 environment differ
only in terms of maintaining average reward over 100 con-
secutive trails. To solve CartPole-v0 , the agent needs to get
average reward of 195 over 100 consecutive trails whereas
to solve CartPole-v1, the agent needs get average reward of
475 over 100 consecutive trails.

The remainder of the paper is organized as follows. We
start with related work in the first section. Then in the imple-
mentation section, we will introduce and discuss our model;
in the results section we will visualize the results obtained
from different experiments and in the conclusion we will
summarize what we gained this project.

Related Work
(Houk, Adams, and A. Barto 1995) explained how doap-

mine neurons in the basal ganglia might acquire the abil-
ity to predict reinforcement, and how outputs from these
neurons might then be used to reinforce behaviours. This
research paved a path for the further research on actor-
critic RL. (Tsitsiklis, Van Roy, et al. 1997) showed that
for linear function approximators, convergence is guaran-
teed if states are sampled according to the steady-state prob-
abilities. (Konda and Tsitsiklis 1999) purposed variations
of actor-critic algorithm and provided an overview of con-
vergence proof. (Joel, Niv, and Ruppin 2002) expanded
(Houk, Adams, and A. Barto 1995) actor-critic models of
the basal ganglia more in terms of computational perspec-
tives. (GOLKHOU, LUCAS, and PARNIANPOUR 2004)
used actor-critic RL in real world application for control-
ling sagittal arm during oscillatory movements. (Bhatna-
gar et al. 2009) introduce an improvement called Natural
actor-critic algorithms to tradition actor-critic algorithms.
All actor-critic algorithm use some variant of policy gradient
methods. In policy-gradient methods, the policy is taken to
be an arbitrary differentiable function of a parameter vector
∈ Rd . Given some performance measure J : Rd → R, we
would like to update the policy parameter in the direction of
the gradient.

∆θ ∝ ∆θJ(θ) (6)

The gradient is not directly available of course, but observed
values can be used to construct unbiased estimators of it; es-
timators that can be used in a stochastic approximation of
the actual gradient. This is the basic idea behind all policy-
gradient reinforcement learning methods. Specific to natural
policy gradient, they follow an intuition that the policy up-
dated should be invariant to bijective transformation i.e. a
change in parameterization should not affect the result of
the policy update. Moreover, use of Natural gradient leads
to simple and computationally effective algorithms. Actor-
critic algorithms are being successfully applied for beam
setup, a peg-in-hole insertion task, biped locomotion, robot
arm to learn motor skills, four legged robot to walk, under-
water cable tracking and many more as shown by (Grond-

man et al. 2012). We were inspired to implement actor-critic
RL after we read about its implementation for brain-machine
interfaces using neuro-biological feedback (Prins, Sanchez,
and Prasad 2014).

Implementation
Since RL doesn’t have standard datasets like MNIST (Le-
Cun, Cortes, and Burges 1998) or IMAGENET (Rus-
sakovsky et al. 2015), we are using the openAI reinforce-
ment learning platform (Brockman et al. 2016) to quan-
tify our algorithm. At first, we started developing a simple
grid world virtual environment to model MDP. In this envi-
ronment, the agent will move through the grids to accumu-
late maximum rewards avoiding traps. We started solving
the problem by implementing simple Temporal Difference
(TD) approach. As Q-learning is critic only RL algorithm,
we implemented it as a part of actor-critic RL. After that,
we applied the same Q-learning and TD algorithm imple-
mentation to the Cartpole control problem. Sadly, it didn’t
work in this case though both were working perfectly on
grid world. After analysis, we found out that our implemen-
tation of both algorithms could only handle discrete states
but the Cartpole problem has continuous states i.e both of
the algorithms were using general table based approach. For
those algorithms to work on continuous states, we needed to
modify our lookup table based approach to function approx-
imation approach (Doya 2000). There are different function
approximation approach like sparse-coarse-coded (CMACs)
(Sutton 1996), Tile and Kanerva coding (Wu and Meleis
2009), Radial Basis Function (RBF) (Kretchmar and Ander-
son 1997), Fourier Basis (Konidaris and Osentoski 2008),
Neural Networks (Sutton et al. 1999) and others which
can be used instead of the traditional table-based approach.
Since both of the implementation didn’t work, we tried to
solve the Cartpole problem using a simple hill climbing al-
gorithm. To our surprise, it worked quite well.

At first, we started with a MLP as a function approximator
and then used RBF as a creative experiment with our algo-
rithm. Implementing MLP with function aproximator made
complete sense as MLP are supposed to be universal func-
tion approximators (Hornik 1991). Then we implemented
policy gradient method based on finite difference. (Peters
and Schaal 2006). Policy gradient strategies assume a dif-
ferentiable structure on a predefined class of stochastic poli-
cies and ascent the gradient. After policy gradient method
worked for the Cartpole problem, we started combining al-
gorithms to build our model as shown in figure 2. The algo-
rithm that we have used is detailed on figure 3.

We tried implementing the TD algorithm with an eligi-
bility trace for the critic part but it didn’t work. After in-
vesting significant time, we found out that eligibility trace
approach is not straighforward with function approximators
(Främling 2007). We found out that instead of eligibility
trace approach, experience replay approach is better in case
of continuous states (Adam, Busoniu, and Babuska 2012).
Our implemented model as of figure 3 was able to solve both
versions of Cartpole of the openAI Gym environment. Then,
we decided to switch to different function approximators and



observe its performance. First we tried using logistic classi-
fier but it was not able to solve either of the problems. Then
we used RBF which was able to solve CartPole-v0 but took
large number of episodes to converge. One of the reason for
RBF network took large amount to converge was due to how
the network is structured to cluster similar things together.
We tried our actor-critic model to solve Ping-Pong environ-
ment. We preprocessed the input frame and resized the frame
to feed into our algorithm. After waiting till 10000 episodes
we terminated our program as we thought it would not solve
this environment. But latter on we found out that it requires
more than 100,000 episodes to show some improvements in
that environment.

Model
The model architecture that we have applied is inspired from
(Prins, Sanchez, and Prasad 2014).

Figure 2: Actor-Critic Model

Algorithm
We first observe the first few episodes recording all the ob-
servation and rewards made. During an observation time of
200 time steps, each time step, an actor takes optimal ac-
tion using the output from simple MLP and saves the next
state and reward. Then, total reward of the episode is cal-
culated by summing the individual rewards. If the episode
is complete then we move on to next episode whereas we
check if the current state is in the replay list or not and add
it if it doesn’t exist. Then we update replay memory and re-
turn the current episode states and rewards to the critic for
assessment. Using these values, critic will calculate value
function using MLP for each state in episodes. If the observ-
ing episodes has passed, actor updates the policy using the
value function from critic and also critic updates the value
estimates. In case of policy update from actor, the weights
of the neural nets is updated using the value function. In
case of value estimates in critic, for each batch from replay
memory, weights will be optimized using MLP.

Figure 3: Actor-Critic Algorithm

Figure 4: Performance of algorithms on CartPole problems

Results
We ran five variants of RL algorithms for the Cartpole prob-
lem. Actor-Critic with MLP did the best among those by
solving CartPole-v0 in 96 episodes and CartPole-v1 in 166
episodes. Actor-Critic with RBF only solved CartPole-v0
taking 7466 episodes but didn’t solve CartPole-v1 within
10000 episodes. Figure 4 visualizes the results obtained for
the experiments.

Conclusion
We studied many Reinforcement Learning algorithms and
literature in course of this project. We would like to exper-
iment with Natural policy gradient as future work. We re-
alized the importance of function approximation for contin-
uous state problems and saw the potent of actor-critic re-
inforcement learning to solve real world complex problems
effectively.
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